
ON PROPER SPLINTERS IN POSITIVE CHARACTERISTIC
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Abstract. While the splinter property is a local property for Noetherian schemes in characteristic
zero, Bhatt observed that it imposes strong conditions on the global geometry of proper schemes

in positive characteristic. We show that if a proper scheme over a field of positive characteristic
is a splinter, then its Nori fundamental group is trivial and its Kodaira dimension is negative.
In another direction, Bhatt also showed that any splinter in positive characteristic is a derived

splinter. We ask whether the splinter property is a derived-invariant for projective varieties in
positive characteristic and give a positive answer for Gorenstein projective varieties with big
anticanonical divisor. For that purpose, we introduce the notion of O-equivalence and show that
the derived splinter property for schemes of finite type and separated over a fixed Noetherian base

is preserved under O-equivalence. Finally, we show that global F -regularity is a derived-invariant
for normal Gorenstein projective varieties in positive characteristic.

1. Introduction

A Noetherian scheme X is a splinter if for all finite surjective morphisms f : Z → X the map
OX → f∗OZ splits in the category of coherent OX -modules. The direct summand conjecture, now
a theorem due to André [And18], stipulates that any regular Noetherian ring is a splinter. In
characteristic zero, the splinter property is a local property : a Noetherian scheme over Q is a
splinter if and only if it is normal. In positive characteristic, the splinter property is no longer
a local property in general. Bhatt’s beautiful [Bha12, Thm. 1.5], inspired from Hochster and
Huneke’s [HH92, Thm. 1.2], shows that, for a proper scheme over an affine Noetherian scheme
of positive characteristic, the positive-degree cohomology of the structure sheaf vanishes up to
finite covers. Bhatt draws two consequences for splinters of positive characteristic : first that the
positive-degree cohomology of semiample line bundles on proper splinters vanishes, and second that
splinters and derived splinters coincide. Our first aim is to provide further global constraints on
proper splinters in positive characteristic. Our second aim is to study whether the splinter property
is a derived-invariant for projective varieties in positive characteristic.

Global constraints on proper splinters in positive characteristic. Recall that a smooth
projective, separably rationally connected, variety over an algebraically closed field of positive
characteristic has trivial Nori fundamental group [Bis09], has negative Kodaira dimension [Kol96,
Ch. IV, Cor. 1.11 & Prop. 3.3], and has no nonzero global differential forms [Kol96, Ch. IV, Cor. 3.8].
Motivated by the intriguing question whether proper splinters over an algebraically closed field of
positive characteristic are separably rationally connected, we show :

Theorem. Let X be a connected proper scheme over a field k of positive characteristic.
Assume that X is a splinter.

(A) (Theorem 7.9) If X has a k-rational point x ∈ X(k), then the Nori fundamental group
πN
1 (X,x) is trivial. In particular, if k is algebraically closed, then any finite torsor over X

is trivial.
(B) (Theorem 8.1) If X is positive-dimensional, then X has negative Kodaira dimension, i.e.,

H0(X,OX(nKX)) = 0 for all n > 0, where KX denotes the canonical divisor of X.
(C) (Theorem 9.2) If X is smooth, then H0(X,Ω1

X) = 0.
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2 JOHANNES KRAH AND CHARLES VIAL

Note from their respective proofs that (C), and (B) in the Gorenstein case, follow from the
known fact, recalled in Proposition 8.4, that the Picard group of a proper splinter over a field of
positive characteristic is torsion-free. The proofs of (A), and of (B) in the general non-Gorenstein
case, rely on a lifting property for splinters along torsors established in Proposition 7.4, which itself
relies on the more general lifting property established in Lemma 5.3. The new idea, which makes
it in particular possible to avoid any Gorenstein assumption, is the use of the exceptional inverse
image functor for finite morphisms. As an aside, by using the more general exceptional inverse
image functor for proper morphisms, we further observe in Proposition 5.4 that the splinter property
for Noetherian schemes of positive characteristic lifts along crepant morphisms. We establish the
following lifting property for splinters along finite quasi-torsor morphisms :

Proposition (Proposition 7.5(ii)). Let π : Y → X be a morphism of normal Noetherian Nagata
schemes over a Noetherian ring R such that either H0(Y,OY ) is a field or H0(X,OX) = H0(Y,OY ).
Assume that π is a finite quasi-torsor, i.e., that there exists a Zariski open subset U ⊆ X with
codimX(X \ U) ≥ 2 such that π−1(U) → U is a torsor under a finite group scheme over R.
If X is a splinter, then Y is a splinter.

In fact, Proposition 7.5(ii) is stated more generally (by Remark 3.4) for globally +-regular pairs
as introduced in [Bha+22], and extends [Bha+22, Prop. 6.20] which deals with the quasi-étale
case. Regarding Theorem (A), we also show in Theorem 7.9 that if X is a proper splinter over
a separably closed field of positive characteristic, then its étale fundamental group is trivial. In
that direction, we also refer to [Cai+23, Thm. 7.0.3], where it is in particular showed that the étale
fundamental group of the regular locus of a normal projective globally +-regular variety satisfying
some additional technical assumptions is finite, but also to the references in the introduction of loc.
cit. regarding the étale fundamental group of regular loci of near smooth Fano varieties.

For proper surfaces, we have the following results regarding splinters. Let k be an algebraically
closed field of positive characteristic. It is well-known that a proper curve over k is a splinter if and
only if it is isomorphic to P1

k. In Proposition 10.1, we use Theorem 8.1 to show that if a proper
surface over k is a splinter, then it is rational. We provide in Proposition 10.4 new examples of
proper rational surfaces that are splinters, by establishing that the blow-up of P2

k in any number of
points lying on a conic is a splinter. On the other hand, in Proposition 10.10 and Proposition 10.12,
we give examples of proper rational surfaces that are not splinters. For instance, we show that over
a finite field the blow-up of P2

k in 9 points lying on a smooth cubic curve is not a splinter.

O-invariance and D-invariance of the splinter property. The second aim of this paper is
to study whether the splinter property, and the related notion of global F -regularity, is a derived-
invariant among projective varieties. We say that two projective varieties X and Y over a field k
are D-equivalent if there is a k-linear equivalence Db(X) ∼= Db(Y ) between their bounded derived
categories of coherent sheaves. Given that a Gorenstein projective splinter, resp. a Gorenstein
projective globally F -regular variety, in positive characteristic is expected to, resp. is known to,
have big anticanonical divisor (see Conjecture 3.12 due to [Bha+22], resp. Proposition 3.11 due to
[SS10, Cor. 4.5]), we obtain the following positive answer :

Theorem. Let X and Y be normal Gorenstein projective varieties of a field k of positive charac-
teristic. Assume that X and Y are D-equivalent. Then :

(D) (Corollary 11.18) X is a splinter if and only if Y is a splinter, provided −KX is big.
(E) (Corollary 11.22) X is globally F -regular if and only if Y is globally F -regular, provided k

is F -finite.

For that purpose, we introduce in Definition 11.6 the notion of O-equivalence for separated
schemes of finite type over a Noetherian base. By Proposition 11.7, this notion coincides with the
classical notion of K-equivalence in the case of normal Gorenstein varieties over a field. As before,
but now for proper morphisms that are not necessarily finite, the new idea is to use the exceptional
inverse image functor of Grothendieck, which allows for more flexibility. In Proposition 11.12, we
observe that Kawamata’s [Kaw02, Thm. 1.4(2)], stating that two D-equivalent smooth projective
complex varieties X and Y with KX or −KX big are K-equivalent, extends to the case of normal
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Gorenstein projective varieties over an arbitrary field (although it might not be necessary, this is the
only place where the Gorenstein assumption is needed). As such, Theorem (D) and Theorem (E)
follow from the following :

Theorem. Let X and Y be varieties of a field k of positive characteristic. Assume that X and Y
are O-equivalent. Then :

(F) (Theorem 11.15) X is a splinter if and only if Y is a splinter.

Assume in addition that X and Y are normal quasi-projective and that k is F -finite. Then :

(G) (Theorem 11.20) X is globally F -regular if and only if Y is globally F -regular.

More generally, we show in Theorem 11.15 that the derived splinter property is invariant under
O-equivalence for integral schemes of finite type and separated over a Noetherian scheme S. We
observe that both Theorems 11.15 and 11.20 hold without any (Q-)Gorenstein assumption and in
fact without any restrictions on the singularities of X nor Y . Again, this is made possible by the
systematic use of the exceptional inverse image functor. For the sake of illustration, we explain in
Section 11.1 how Theorems 11.15 and 11.20 follow in the case of normal terminal varieties over k
from the fact that a K-equivalence between two such varieties induces a small birational map. Note
however that in positive characteristic, splinters and globally F -regular varieties may have worse
singularities; in fact, both the splinter property and global F -regularity are expected to locally be
the analogues of klt singularities in the complex setting.

Organization of the paper. In Sections 2 to 4, we mostly fix notation and collect basic and
known facts about splinters and globally F -regular varieties. Our first new contributions are
contained in Sections 5 and 6 dealing respectively with splinters and globally F -regular varieties.
Notably, the use of the exceptional inverse image functor makes its first appearance in Section 5.2,
where we observe that the splinter property lifts along finite surjective morphisms π : Y → X of
Noetherian schemes such that π!OX

∼= OY , under the condition that either H0(Y,OY ) is a field or
H0(X,OX) = H0(Y,OY ).

In Sections 7 to 10, we explore global constraints on proper splinters in positive characteristic
and establish Theorems (A) to (C). In Section 10, we show that proper splinter surfaces in positive
characteristic are rational, and give examples of rational surfaces that are splinters as well as
examples of rational surfaces that are not splinters.

Finally in Section 11, which can be read mostly independently of the rest of the paper, we
introduce the notion of O-equivalence for separated schemes of finite type over a Noetherian
scheme S and compare it, in the case of Gorenstein projective varieties over a field, to the usual
notions of K-equivalence and D-equivalence. We then establish Theorems (D) to (G).

Conventions. A variety is an integral separated scheme of finite type over a field. For a scheme X
over the finite field Fp with p elements, the Frobenius is denoted by F : X → X ; it is the identity
on the underlying topological space and sends each local section of OX to its p-th power. A scheme
X over Fp is said to be F -finite if the Frobenius map F : X → X is finite. Note that a variety
over an F -finite field is an F -finite scheme. For a scheme X, we denote by Xreg its regular locus
and by Xsing := X \Xreg its singular locus ; if X is J-1, e.g. if X is excellent, then Xreg ⊆ X is an
open embedding [Sta23, Tag 07P6]. We denote by ν : Xν → X the normalization of X ; if X is
Nagata, e.g. if X is excellent, then ν is a finite morphism [Sta23, Tag 035S]. Both the Nagata and
the excellent properties are stable under locally of finite type extensions ; see [Sta23, Tag 0359] and
[Sta23, Tag 07QS]. For a finite, resp. proper, morphism f : Z → X, we denote by ηf : OX → f∗OZ ,
resp. ηf : OX → Rf∗OZ , the canonical morphism in the category, resp. derived category, of coherent
sheaves on X. Given a Weil divisor D on a normal scheme X, we write σD : OX → OX(D) for the
morphism determined by D.

Acknowledgements. We thank Javier Carvajal-Rojas and Karl Schwede for useful comments.
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2. Reflexive sheaves and dualizing complexes

2.1. Reflexive sheaves and Weil divisors. Let X be an integral Noetherian scheme. Recall
that a coherent sheaf F on X is called reflexive if the canonical map F → F∨∨ is an isomorphism,
where by definition F∨ := HomOX

(F,OX). The following facts can be found for example in [Sta23,
Tag 0AVT] :

(i) For any coherent sheaf F and any reflexive sheaf G the sheaf HomOX
(F,G) is reflexive.

(ii) If X is normal, then a sheaf is reflexive if and only if it is S2.
(iii) If X is normal and i : U ↪→ X is an open immersion such that codimX(X \ U) ≥ 2, then

i∗i
∗F ∼= F for any reflexive sheaf F. Furthermore, the restriction i∗ induces an equivalence

of categories from reflexive coherent sheaves on X to reflexive coherent sheaves on U .

To any Weil divisor D on an integral normal Noetherian scheme X with function field K(X), one
can associate a coherent sheaf OX(D) ⊆ K(X) whose sections on open subsets V ⊆ X are given by

Γ(V,OX(D)) := {f ∈ K(X)× | div(f)|V +D|V ≥ 0} ∪ {0}.
The sheaf OX(D) is reflexive of rank 1 and it is a line bundle if and only if D is Cartier. Since any
reflexive rank 1 sheaf is a subsheaf of the locally constant sheaf K(X), we have [Sta23, Tag 0EBM]
a 1-1 correspondence

{Weil divisors on X up to linear equivalence} ↔ {reflexive sheaves of rank 1 on X}/ ∼= .

Moreover thanks to (iii) and to the fact that Weil divisors on regular schemes are Cartier, if X is in
addition assumed to be excellent (in which case, the regular locus of X is open and, by normality,
dense in X), then this bijection turns out to be a group homomorphism provided one takes the
double dual of the usual tensor product on the right hand side, i.e.,

OX(D +D′) ∼= (OX(D)⊗ OX(D′))∨∨.

A Weil divisor D on a normal Noetherian scheme is effective if and only if OX ⊆ OX(D) ⊆ K(X).
Thus a reflexive rank 1 sheaf F corresponds to an effective Weil divisor D if and only if there is an
injective morphism OX ↪→ F. For later use recall the following criterion.

Lemma 2.1. Let X be an integral normal Noetherian scheme and assume that H0(X,OX) is
a field. Then a Weil divisor D on X is linearly equivalent to 0 if and only if both OX(D) and
OX(−D) admit nonzero global sections.

Proof. The only if part is obvious. Assume s : OX → OX(D) and t : OX → OX(−D) are nontrivial
sections. We have isomorphisms of sheaves HomOX

(OX ,OX(−D)) ∼= HomOX
(OX(D),OX) and

HomOX
(OX(D),OX(D)) ∼= HomOX

(OX ,OX). Therefore we can interpret t as a global section
of HomOX

(OX(D),OX). The compositions s ◦ t and t ◦ s are both nonzero and give elements in
H0(X,OX), thus they are isomorphisms. Hence OX

∼= OX(D), which shows that D is trivial. □

Given two Weil divisors D and E on a normal Noetherian scheme X, we write D ∼ E if D
and E are linearly equivalent. Likewise, for two Q-Weil divisors D and E, we write D ∼Q E if D
and E are Q-linearly equivalent.

Let f : Y → X be a finite surjective morphism between normal excellent Noetherian schemes
and let D be a Q-Weil divisor on X. Then, see, e.g., [KM98, Proof of Prop. 5.20], the pullback
f∗D can be defined by restricting D to Xreg, pulling back to f−1(Xreg), and then extending the
pullback uniquely to a Weil divisor on Y , which is possible since codimY (Y \ f−1(Xreg)) ≥ 2.

2.2. Exceptional inverse image functor and dualizing complexes. Let h : X → S be a
scheme of finite type and separated over a Noetherian scheme S. The exceptional inverse image
functor h! is well-defined, see, e.g., [Sta23, Tag 0AU3], and if S admits a dualizing complex ω•

S ,
then ω•

X := h!ω•
S is a dualizing complex on X. More generally, if f : X → Y is an S-morphism

of schemes of finite type and separated over a Noetherian scheme, the exceptional inverse image
functor f ! is well-defined, and if f is proper it is right adjoint to Rf∗. If X is equidimensional,
ωX := H− dimX(ω•

X) is an S2 sheaf, called the dualizing sheaf [Sta23, Tag 0AWH]. Moreover,
X is Cohen–Macaulay if and only if ω•

X = ωX [dimX] [Sta23, Tag 0AWQ] and X is Gorenstein
if and only if ω•

X is an invertible object [Sta23, Tag 0AWV]. The latter condition is further

https://stacks.math.columbia.edu/tag/0AVT
https://stacks.math.columbia.edu/tag/0EBM
https://stacks.math.columbia.edu/tag/0AU3
https://stacks.math.columbia.edu/tag/0AWH
https://stacks.math.columbia.edu/tag/0AWQ
https://stacks.math.columbia.edu/tag/0AWV
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equivalent to ω•
X = ωX [dimX] with ωX an invertible sheaf [Sta23, Tag 0FPG]. If X is normal and

equidimensional, then ωX is a reflexive sheaf of rank 1 ; thus, there exists a unique (up to linear
equivalence) Weil divisor KX , called the canonical divisor, such that ωX = OX(KX).

Let now h : X → Spec k be a scheme of finite type and separated over a field k. Then ω•
X :=

h!OSpec k ∈ Db(X) is a dualizing complex on X. Here and throughout this paper Db(X) :=
Db(Coh(X)) is the bounded derived category of coherent OX -modules. If X is smooth over k,

then the dualizing sheaf ωX coincides with the canonical sheaf
∧dimX

Ω1
X/k [Sta23, Tag 0E9Z]. If

h : X → Spec k is proper and X is equidimensional, then Rh∗ is left adjoint to h! and for every
K ∈ Db(X), there is a functorial isomorphism ExtiX(K,ω•

X) = Homk(H
i(X,K), k) compatible with

shifts and exact triangles, see, e.g., [Sta23, Tag 0FVU]. By Yoneda, the object ω•
X is unique up to

unique isomorphism among all objects satisfying this universal property.
The following general Lemma 2.2 is a consequence of the properties of the exceptional inverse

image functor. In particular, choosing q : Z → Y in the statement of Lemma 2.2 to be an
isomorphism, it shows that if p : Z → X is a separated morphism of finite type, then p!OX

∼= OZ if
and only if Lp∗ω•

X
∼= ω•

Z .

Lemma 2.2. Let X and Y be schemes of finite type and separated over a Noetherian scheme S
such that S admits a dualizing complex ω•

S. Denote by hX : X → S and hY : Y → S the structure
morphisms. Let Z be a scheme of finite type and separated over S with S-morphisms p : Z → X
and q : Z → Y . Then in DCoh(OZ) we have

Lp∗ω•
X
∼= Lq∗ω•

Y ⇐⇒ p!OX
∼= q!OY ,

where ω•
X = h!

Xω•
S and ω•

Y = h!
Y ω

•
S. In particular, if X and Y are equidimensional and Gorenstein,

then

p∗ωX [dimX] ∼= q∗ωY [dimY ] ⇐⇒ p!OX
∼= q!OY ,

where ωX = H− dimX(ω•
X) and ωY = H− dimY (ω•

Y ).

Proof. Let ω•
Z := p!ω•

X = q!ω•
Y and recall, e.g. from [Sta23, Tag 0AU3], that the functor

RHomOZ
(−, ω•

Z) defines an involution of DCoh(OZ). Moreover, the formula

RHomOZ
(p!M,ω•

Z) = Lp∗RHomOX
(M,ω•

X)

holds naturally in M ∈ D+
Coh(OX) and similarly for q : Z → Y . Setting M = OX or M = OY yields

RHomOZ
(p!OX , ω•

Z) = Lp∗ω•
X and RHomOZ

(q!OY , ω
•
Z) = Lq∗ω•

Y .

Therefore, p!OX
∼= q!OY if and only if Lp∗ω•

X
∼= Lq∗ω•

Y . □

Remark 2.3. Let π : Y → X is a separated morphism of finite type of Noetherian schemes. If X
admits a dualizing complex ω•

X and π!OX
∼= OY , then Lemma 2.2 implies Lp∗ω•

X
∼= ω•

Y . Since a
scheme admitting a dualizing complex is Gorenstein if and only if it admits an invertible dualizing
complex, we observe that if X is Gorenstein, then Y is Gorenstein. Likewise, since a scheme
admitting a dualizing complex is Cohen–Macaulay if and only if it admits a dualizing complex that
is the shift of a sheaf, we observe that if X is Cohen–Macaulay, then Y is Cohen–Macaulay.

Remark 2.4. A proper surjective morphism of normal excellent Noetherian schemes π : Y → X
such that π!OX

∼= OY and such that X admits a dualizing complex is generically finite. Indeed, the
regular locus Xreg of X is open (since X is excellent) and dense (since X is normal) and, likewise, the
regular locus U of π−1(Xreg) is open and dense. Denote by p : U → Xreg the restriction of π. Since
the restriction to open subsets commutes with exceptional inverse image functors [Sta23, Tag 0G4J],
we have p!OXreg

∼= OU . By Lemma 2.2, we have an isomorphism ωU [dimY ] ∼= p∗ωXreg [dimX], and
thus dimY = dimX.

3. Preliminaries on splinters and globally F -regular varieties

3.1. Splinters. We review the notion of splinter for Noetherian schemes, the local constraints
it imposes, as well as the global constraints it imposes on proper schemes over a field of positive
characteristic.

https://stacks.math.columbia.edu/tag/0FPG
https://stacks.math.columbia.edu/tag/0E9Z
https://stacks.math.columbia.edu/tag/0FVU
https://stacks.math.columbia.edu/tag/0AU3
https://stacks.math.columbia.edu/tag/0G4J
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Definition 3.1. A Noetherian scheme X is a splinter if for any finite surjective morphism
f : Y → X the canonical map OX → f∗OY splits in the category Coh(X) of coherent sheaves on X.
A Noetherian scheme X is a derived splinter if for any proper surjective morphism f : Y → X the
map OX → Rf∗OY splits in the bounded derived category Db(X) of coherent sheaves on X.

Note that a derived splinter is a splinter, so that being a derived splinter is a priori more
restrictive than being a splinter. In the recent work [Bha+22], the notion of splinter has been
extended to pairs. Precisely :

Definition 3.2 ([Bha+22, Def. 6.1]). Let (X,∆) be a pair consisting of a normal excellent
Noetherian scheme X and of an effective Q-Weil divisor ∆. The pair (X,∆) is called globally
+-regular if for any finite surjective morphism f : Y → X with Y normal, the natural map
OX → f∗OY (⌊f∗∆⌋) splits in Coh(X).

Remark 3.3. Note that [Bha+22, Def. 6.1] only consider schemes whose closed points have residue
fields of positive characteristic. A reason for this is outlined in [Bha+22, Rmk. 6.3]. Since for our
applications this condition is not necessary, we deviate from that convention.

Remark 3.4. It is obvious that if a normal excellent Noetherian scheme X is a splinter, then (X, 0)
is globally +-regular. For the converse, recall from [Sta23, Tag 035S] that the normalization of an
excellent scheme is a finite morphism. Thus, if π : Y → X is a finite surjective morphism, then
Y is excellent so that the normalization ν : Y ν → Y is finite. Any splitting of OX → (π ◦ ν)∗OY ν

provides a splitting of OX → π∗OY .

In general, if a Noetherian scheme X is a splinter, then it is a basic fact that any open U ⊆ X is
a splinter ; see, e.g., Lemma 4.1(i) below. Hence, if X is a splinter, then all of its local rings are
splinters. Moreover, if X is in addition assumed to be affine, X is a splinter if and only if all its
local rings are splinters [DT23, Lem. 2.1.3].

In characteristic zero, a Noetherian scheme X is a splinter if and only if it is normal [Bha12,
Ex. 2.1], and it is a derived splinter if and only if it has rational singularities [Bha12, Thm. 2.12].
In particular, in characteristic zero, the splinter and derived splinter properties are distinct, and
they both define local properties.

In positive characteristic, Bhatt showed that the splinter and the derived splinter properties
agree [Bha12, Thm. 1.4] and observed that, in contrast to the affine setting, the splinter property is
not a local property for proper schemes. The following proposition summarizes the known local
constraints on splinters in positive characteristic.

Proposition 3.5 ([Bha12, Ex. 2.1, Rmk. 2.5, Cor. 6.4], [Bha21, Rmk. 5.14], [Sin99], [Smi00, §2.2]).
Let X be a scheme of finite type over a field of positive characteristic. If X is a splinter, then

(i) X is normal ;
(ii) X is Cohen–Macaulay ;
(iii) X is pseudo-rational ;
(iv) X is F -rational.

Moreover, if X is Q-Gorenstein, then X is F -regular, that is, if k is assumed to be F -finite, its
local rings are strongly F -regular.

Recall from [HH89] that an F -finite ring R of positive characteristic is strongly F -regular if for
any c ∈ R not belonging to any minimal prime ideal of R, there exists e > 0 such that the inclusion
of R-modules R ↪→ F e

∗R which sends 1 to F e
∗ c splits as a map of R-modules. The ring R is strongly

F -regular if and only if its local rings are strongly F -regular. If R is strongly F -regular, then the
affine scheme X = SpecR is a splinter ; see, e.g., [MP19, Thm. 4.8].

The splinter property also imposes strong constraints on the global geometry of proper varieties
in positive characteristic. For example, from Bhatt’s “vanishing up to finite cover in positive
characteristic” [Bha12, Thm. 1.5], we have :

Proposition 3.6 ([Bha12]). Let X be a proper variety over a field of positive characteristic and
let L be a semiample line bundle on X. If X is a splinter, then Hi(X,L) = 0 for all i > 0. In
particular, Hi(X,OX) = 0 for all i > 0.

https://stacks.math.columbia.edu/tag/035S
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Proof. For a proper variety X over a field of positive characteristic, there exists, by [Bha12,
Prop. 7.2], for any i > 0 a finite surjective morphism π : Y → X such that the induced map
Hi(X,L) → Hi(Y, π∗L) is zero. If now X is a splinter, the pullback map OX → π∗OY admits a
splitting s, i.e., we have

id: OX → π∗OY
s→ OX .

Tensoring with L and using the projection formula, we obtain

id: Hi(X,L)
0−→ Hi(Y, π∗L) = Hi(X,π∗π

∗L)→ Hi(X,L),

where the equality in the middle uses that π is finite, in particular affine. We conclude that
Hi(X,L) = 0. □

As a direct consequence, we have the following useful constraint, which will be refined in
Theorem 8.1, on proper splinters in positive characteristic :

Lemma 3.7. Let X be a proper scheme over a field of positive characteristic, with positive-
dimensional irreducible components. If X is a splinter, then its canonical divisor KX is not effective,
in particular its dualizing sheaf ωX is nontrivial.

Proof. Since a splinter is normal, by working on each connected component of X separately, we
can assume that X is of pure positive dimension, say n. By Proposition 3.5, X is Cohen–Macaulay,
so ω•

X = ωX [n]. By Proposition 3.6 and Serre duality for Cohen–Macaulay schemes, we obtain
H0(X,ωX)∨ ∼= Hn(X,OX) = 0. This shows that the Weil divisor KX is not effective. □

3.2. Globally F -regular varieties. Let p be a prime number. We recall the notion of global
F -regularity for normal varieties over an F -finite field of characteristic p, and review the local
constraints it imposes, as well as the global constraints it imposes on proper varieties.

Definition 3.8 ([Smi00; SS10]). A normal F -finite scheme X over Fp is called globally F -regular if
for any effective Weil divisor D on X there exists a positive integer e ∈ Z>0 such that the map

OX → F e
∗OX

F e
∗ (σD)−−−−−→ F e

∗OX(D)

of OX -modules splits. Here σD : OX → OX(D) is the morphism determined by the Weil divisor D.
A normal F -finite scheme X over Fp is called F -split if OX → F∗OX splits.
A pair (X,∆) consisting of a normal F -finite scheme X over Fp and an effective Q-Weil divisor ∆
is called globally F -regular if for any effective Weil divisor D on X there exists an integer e > 0
such that the natural map

OX → F e
∗OX(⌈(pe − 1)∆⌉+D)

of OX -modules splits. In particular, X is globally F -regular if and only if (X, 0) is globally F -regular.

The following well-known proposition gives local constraints on a normal variety over an F -finite
field to be globally F -regular and echoes Proposition 3.5.

Proposition 3.9. Let X be a normal F -finite scheme over Fp. If X is globally F -regular, then its
local rings are strongly F -regular.

Proof. We follow the arguments of [Smi19, Prop. 6.22]. Fix a point x ∈ X. If c ∈ OX,x is a nonzero
element, c defines an effective divisor in the neighborhood of x. By taking the Zariski closure,
this divisor extends to a Weil divisor D on X such that the map OX → OX(D) localizes to the
map OX,x → OX,x[c

−1] sending 1 7→ 1. Since X is globally F -regular, there exists e > 0 such
that OX → F e

∗OX(D) splits. Thus, localizing yields a splitting of the map OX,x → F e
∗ (OX,x[c

−1])
sending 1 7→ 1. Multiplying by c yields a splitting of the map OX,x → F e

∗OX,x sending 1 7→ F e
∗ c. □

Global F -regularity is a local property for normal affine varieties. Indeed, a normal affine variety
over an F -finite field k is globally F -regular if and only if it is strongly F -regular if and only if all
its local rings are strongly F -regular ; see [HH89, Thm. 3.1]. By Proposition 3.5 and the discussion
that follows, we see that a Q-Gorenstein normal affine variety over an F -finite field is globally
F -regular if and only if it is a splinter. In fact, any normal globally F -regular variety over an
F -finite field is a splinter :
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Proposition 3.10 ([Bha12, Prop. 8.9], [Bha+22, Lem. 6.14]). Let X be an F -finite normal excellent
scheme over Fp and let ∆ be an effective Q-Weil divisor. If (X,∆) is globally F -regular, then
(X,∆) is globally +-regular.
In particular, by Remark 3.4, assuming X is a normal scheme of finite type over an F -finite field,
if X is globally F -regular, then X is a splinter.

As Proposition 3.6 in the splinter case, global F -regularity imposes strong constraints on the
global geometry of normal projective varieties :

Proposition 3.11 ([Smi00, Cor. 4.3], [SS10, Thm. 1.1]). Let X be a normal projective variety
over an F -finite field of positive characteristic. Assume that X is globally F -regular. Then :

(i) For all nef line bundles L on X, Hi(X,L) = 0 for all i > 0.
(ii) X is log Fano ; in particular, if X is in addition Q-Gorenstein, then −KX is big.

A proper normal curve over an algebraically closed field k of positive characteristic is globally
F -regular if and only if it is splinter if and only if it is isomorphic to the projective line. It follows
from the proof of [KT23, Thm. 5.2] that a smooth projective Fano variety over a perfect field of
positive characteristic is globally F -regular if and only if it is a splinter if and only if it is F -split.
The following conjecture stems from Proposition 3.11(ii) and the folklore expectation (see, e.g.,
[Bha+22, Rmk. 6.16]) that splinters should be globally F -regular.

Conjecture 3.12 ([Bha+22, Conj. 6.17]). Let X be a Q-Gorenstein projective scheme over a field
of positive characteristic. If X is a splinter, then −KX is big.

4. Invariance under small birational maps

We start by describing the behavior of the splinter property under open embeddings. Recall that
the normalization of a Nagata scheme is finite [Sta23, Tag 035S], and that, if Y → X is locally of
finite type and X is Nagata, then Y is Nagata [Sta23, Tag 0359]. Moreover, any excellent scheme
is Nagata [Sta23, Tag 07QS].

Lemma 4.1. Let X be a Noetherian scheme and let U ⊆ X be an open dense subset.

(i) If X is a splinter, then U is a splinter.
(ii) Assume that X is normal and Nagata, and that codimX(X \ U) ≥ 2. If U is a splinter,

then X is a splinter.

Proof. To prove (i) consider a finite cover f : Y → U . By [Bha12, Prop. 4.1] this cover extends to a
finite morphism f̄ : Y → X. Since X is a splinter, we obtain a section s such that the composition

OX → f̄∗OY
s−→ OX

is the identity. By restricting to U , we obtain the desired section of OU → f∗OY .
For (ii) consider a finite cover f : Y → X. Since X is Nagata, so is Y . By possibly replacing Y

by its normalization, we can assume that Y is normal. The sheaf f∗OY satisfies the property S2

by [Gro65, Prop. 5.7.9] and is therefore reflexive. Since U is a splinter, we obtain a splitting of
OU → f∗OY |U and this extends to a splitting of OX → f∗OY as X is normal and all the involved
sheaves are reflexive. □

Remark 4.2. Let ∆ be an effective Q-Weil divisor on a normal excellent Noetherian scheme X and
let U ⊆ X be an open dense subset. As the proof is analogous to the one of Lemma 4.1, we leave
it to the reader to verify that if (X,∆) is globally +-regular, then (U,∆|U ) is globally +-regular.
Conversely, if codimX(X \ U) ≥ 2 and if (U,∆|U ) is globally +-regular, then (X,∆) is globally
+-regular.

Lemma 4.3. Let π : X → Y be a surjective morphism of Noetherian schemes. Assume that X is a
splinter and that Y is integral with generic point η, then the generic fiber Xη is a splinter.

Proof. Let f : Z → Xη be a finite surjective morphism. Then there exists a nonempty open subset
U ⊆ Y such that f spreads out to a finite surjective morphism fU : ZU → XU := π−1(U). By
Lemma 4.1 the scheme XU is a splinter. Thus OXU

→ fU ∗OZU
admits a section. By flat base

change, restricting to the generic fiber yields the desired splitting. □

https://stacks.math.columbia.edu/tag/035S
https://stacks.math.columbia.edu/tag/0359
https://stacks.math.columbia.edu/tag/07QS
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We now turn to the analogues of Lemma 4.1 and Lemma 4.3 in the global F -regular setting.
The following elementary lemma appears, e.g., in [Gon+15, Lem. 1.5].

Lemma 4.4. Let (X,∆) be a pair consisting of a normal variety over an F -finite field k of positive
characteristic and of an effective Q-Weil divisor ∆, and let U ⊆ X be an open subset.

(i) If (X,∆) is globally F -regular, then (U,∆|U ) is globally F -regular.
(ii) Assume that U ⊆ X is dense and codimX(X \ U) ≥ 2. If (U,∆|U ) is globally F -regular,

then (X,∆) is globally F -regular.

Proof. For the proof of (i), consider an effective Weil divisor D0 on U . Let D be the Zariski closure
of D0 in X. By assumption there exists e > 0 such that OX → F e

∗OX(⌈(pe − 1)∆⌉ + D) splits.
Restricting to U yields the desired splitting of OU → F e

∗OU (⌈(pe − 1)∆|U⌉+D0).
To prove (ii), note that, since F is finite, F∗ preserves S2 sheaves by [Gro65, Prop. 5.7.9], so F∗

sends reflexive sheaves to reflexive sheaves. Furthermore, the restriction along U ↪→ X induces a
bijection between Weil divisors of X and Weil divisors of U . Statement (ii) follows since, for any
Weil divisor D, the map OX → F e

∗OX(⌈(pe − 1)∆⌉+D) of reflexive sheaves splits if and only if its
restriction to U splits. □

Lemma 4.5. Let π : X → Y be a surjective morphism of normal varieties over an F -finite field of
positive characteristic. Assume that (X,∆) is globally F -regular and that Y is integral with generic
point η. Then the generic fiber Xη is normal and (Xη,∆η) is globally F -regular.

Proof. By [SS10, Lem. 3.5], X is globally F -regular. It follows from Proposition 3.10 that X is
a splinter and then from Lemma 4.3 that Xη is a splinter, so Xη is normal. Given an effective
Weil divisor D0 on Xη, we denote by D its Zariski closure in X. Since (X,∆) is globally F -regular,
there exists e > 0 such that OX → F e

∗OX(⌈(pe− 1)∆⌉+D) splits. The lemma follows by restricting
the splitting along Xη ↪→ X. □

Finally, we draw as a consequence of the above that both the splinter property and the global
F -regular property are invariant under small birational maps of normal varieties.

Definition 4.6 (Small birational map). A rational map f : X 99K Y between Noetherian schemes
is said to be a small birational map if there exist nonempty open subsets U ⊆ X and V ⊆ Y with

codimX(X \ U) ≥ 2 and codimY (Y \ V ) ≥ 2 such that f induces an isomorphism U
≃−→ V .

Proposition 4.7. Let f : X 99K Y be a small birational map between normal schemes of finite type
over a Noetherian scheme S. The following statements hold :

(i) Assuming S is Nagata, X is a splinter if and only if Y is a splinter.
(ii) Assuming S = Spec k with k of positive characteristic and F -finite, X is globally F -regular

if and only if Y is globally F -regular.

Proof. Statement (i) follows directly from Lemma 4.1 and statement (ii) from Lemma 4.4. □

5. Lifting and descending the splinter property

5.1. Descending the splinter property. If π : Y → X is a morphism of varieties such that OX →
π∗OY is an isomorphism, e.g., if π is flat proper with geometrically connected and geometrically
reduced fibers, or if π : Y → X is birational and X is a normal proper variety, it is a formal
consequence that the splinter property descends along π. Indeed, we have the following lemma.

Lemma 5.1. Let π : Y → X be a morphism of Noetherian schemes.

(i) If Y is a splinter and the map OX → π∗OY is split, then X is a splinter.
(ii) If Y is a derived splinter and OX → Rπ∗OY is split, then X is a derived splinter.

Assume further that X and Y are normal and excellent, and let ∆ be an effective Q-Weil divisor
on X.

(iii) If (Y, π∗∆) is globally +-regular and OX → π∗OY is split, then (X,∆) is globally +-regular.
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Proof. We only prove (iii) since (i) and (ii) admit similar proofs. Let f : Z → X be a finite surjective
morphism with Z normal. Let Z ′ → Y ×X Z be the normalization of the fiber product, which is
finite over Y since Y is excellent. (This step is not needed for the proofs of (i) and (ii) where one
simply takes Z ′ = Y ×X Z.) We obtain a commutative square

Z ′ Z

Y X.

π′

f ′ f

π

Since (Y, π∗∆) is globally +-regular, we have a splitting

OY → f ′
∗OZ′(⌊f ′∗π∗∆⌋) t−→ OY .

Fixing a splitting OX → π∗OY
s−→ OX , we obtain a factorization

idOX
: OX → π∗OY → π∗f

′
∗OZ′(⌊f ′∗π∗∆⌋) = f∗π

′
∗OZ′(⌊π′∗f∗∆⌋) π∗t−−→ π∗OY

s−→ OX .

Since OX → f∗π
′
∗OZ′(⌊π′∗f∗∆⌋) = f∗π

′
∗π

′∗OZ(⌊f∗∆⌋) factors through OX → f∗OZ(⌊f∗∆⌋), the
lemma follows. □

Remark 5.2. Assume X and Y are schemes over a field k. If X ×k Y is a splinter, then so are X
and Y . Indeed, if π : X ×k Y → X denotes the first projection, then π∗OX×kY = OX ⊗k H

0(Y,OY )
and any splitting of the k-linear map k → H0(Y,OY ), 1 7→ 1Y provides a splitting of the natural
map OX → π∗OX×kY .

5.2. Lifting the splinter property. Recall, e.g. from [Har77, Ch. III, Ex. 6.10], that for a finite
morphism π : Y → X of Noetherian schemes the exceptional inverse image functor is the functor
taking quasi-coherent OX -modules F to the quasi-coherent OY -modules π!F := HomOX

(π∗OY ,F).

Lemma 5.3. Let π : Y → X be a finite surjective morphism of Noetherian schemes such that either
H0(Y,OY ) is a field or H0(X,OX) = H0(Y,OY ). Assume that π!OX

∼= OY .

(i) If X is a splinter, then Y is a splinter.
(ii) Assume that X is defined over Fp. If X is F -split and if the map OX → π∗OY splits, then

Y is F -split.

Proof. First assume that X is a splinter. Let f : Z → Y be a finite surjective morphism. The
splitting of ηf : OY → f∗OZ is equivalent to the surjectivity of

HomOY
(f∗OZ ,OY )

−◦ηf−−−→ HomOY
(OY ,OY ).

The adjunction π∗ ⊣ π! [Har77, Ch. III, Ex. 6.10(b)] provides the following commutative diagram

HomOY
(f∗OZ ,OY ) HomOY

(OY ,OY )

HomOY
(f∗OZ , π

!OX) HomOY
(OY , π

!OX)

HomOX
(π∗f∗OZ ,OX) HomOX

(π∗OY ,OX)

HomOX
(OX ,OX) HomOX

(OX ,OX).

∼=

−◦ηf

∼=

=

−◦ηf

=

−◦ηπ◦f

−◦π∗ηf

−◦ηπ

Since X is a splinter, the bottom-left vertical arrow − ◦ ηπ◦f is surjective. This implies on the
one hand that − ◦ ηf is nonzero, and on the other hand that − ◦ ηπ is surjective. Assuming that
HomOY

(OY ,OY ) = H0(Y,OY ) is a field, the former yields that − ◦ ηf is surjective since it is a
map of H0(Y,OY )-modules. Assuming that H0(X,OX) = H0(Y,OY ), the latter yields that the
composition of the right vertical arrows, which is H0(X,OX)-linear, is bijective and hence that
− ◦ ηf is surjective.
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In case where X is assumed to be F -split, we argue via the same diagram with f : Z → Y
replaced by the Frobenius F : Y → Y . If s : π∗OY → OX is a splitting of the map OX → π∗OY ,
then, with a Frobenius splitting of X, we obtain a diagram

OX → π∗F∗OY = F∗π∗OY
F∗(s)−−−→ F∗OX → OX ,

where the composition is the identity. This proves that the bottom-left arrow − ◦ ηπ◦F is surjective.
As in the splinter case, we deduce that − ◦ ηF is surjective, i.e., that Y is F -split. □

A morphism of schemes π : Y → X is said to be a crepant morphism if it is proper, birational,
and is such that π!OX

∼= OY . Note that by Lemma 2.2, if X is assumed to be Gorenstein, the latter
condition is equivalent to π∗ωX = ωY . We have the following derived version of Lemma 5.3(i) :

Proposition 5.4 (The splinter property in positive characteristic lifts along crepant morphisms).
Let π : Y → X be a proper surjective morphism of Noetherian schemes such that either H0(Y,OY )
is a field or H0(X,OX) = H0(Y,OY ). Assume that π!OX

∼= OY . If X is a derived splinter, then Y
is a derived splinter.

In particular :

(i) If π : Y → X is a crepant morphism of Noetherian schemes and if X is a derived splinter,
then Y is a derived splinter.

(ii) If π : Y → X is a crepant morphism of Noetherian schemes over Fp and if X is a splinter,
then Y is a splinter.

Proof. The statement about derived splinters is proved as Lemma 5.3(i) by using the formalism
of the exceptional inverse image functor as described in [Sta23, Tag 0A9Y] and the adjunction
Rπ∗ ⊣ π!. The statement about splinters follows from the fact [Bha12, Thm. 1.4] that splinters in
positive characteristic agree with derived splinters. □

Remark 5.5. Statements (i) and (ii) of Proposition 5.4 can also be obtained as a consequence of
Theorem 11.15 below.

Remark 5.6. Under the additional assumption that X is Gorenstein, Brion and Kumar establish in
[BK05, Lem. 1.3.13] that if π : Y → X is a crepant morphism of normal F -finite schemes over Fp

with X F -split, then Y is F -split.

Remark 5.7. Let π : Y → X be a birational morphism of normal integral schemes proper over a
complete Noetherian local domain with positive characteristic residue field. Assume that X is
Q-Gorenstein and that π∗KX = KY in Pic(Y )⊗Q. It is shown in [Bha+22, Lem. 4.19] that if X
is a splinter, then Y is a splinter.

For the sake of completeness, we mention that Lemma 5.3 also holds for globally +-regular pairs :

Lemma 5.8. Let π : Y → X be a finite surjective morphism of normal excellent Noetherian schemes
such that either H0(Y,OY ) is a field or H0(X,OX) = H0(Y,OY ), and let ∆ be an effective Q-Weil
divisor on X. Assume that π!OX

∼= OY . If (X,∆) is globally +-regular, then (Y, π∗∆) is globally
+-regular.

Proof. Let f : Z → Y be a finite surjective morphism with Z normal. We have to show that the
map ηf,π∗∆ : OY → f∗OZ(⌊f∗π∗∆⌋) splits, or equivalently, that

HomOY
(f∗OZ(⌊f∗π∗∆⌋),OY )

−◦ηf,π∗∆−−−−−−→ HomOY
(OY ,OY )

https://stacks.math.columbia.edu/tag/0A9Y
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is surjective. Note that the map ηπ◦f,∆ : OX → π∗f∗OZ(⌊f∗π∗∆⌋) factors through OX → π∗OY .
Hence, the following diagram commutes :

HomOY
(f∗OZ(⌊f∗π∗∆⌋),OY ) HomOY

(OY ,OY )

HomOY
(f∗OZ(⌊f∗π∗∆⌋), π!OX) HomOY

(OY , π
!OX)

HomOX
(π∗f∗OZ(⌊f∗π∗∆⌋),OX) HomOX

(π∗OY ,OX)

HomOX
(OX ,OX) HomOX

(OX ,OX).

∼=

−◦ηf,π∗∆

∼=

=

−◦ηf,π∗∆

=

−◦ηπ◦f,∆

−◦π∗ηf,π∗∆

−◦ηπ

We conclude as in Lemma 5.3. □

5.3. The splinter property and base change of field. The following proposition establishes
the invariance fo the splinter property for proper schemes over a field under algebraic base change.
We refer to Remark 6.10 for base change along any field extension.

Proposition 5.9. Let X be a scheme over a field k such that H0(X,OX) is a field, e.g., X is
proper, connected, and reduced. Then, for any algebraic field extension L of H0(X,OX), the scheme
XL := X ×H0(X,OX) L is a splinter if and only if X is a splinter.

Proof. The “only if” part of the proposition follows from Lemma 5.1. Let K := H0(X,OX). First
assume L is a finite extension of K and let h : SpecL→ SpecK. Then

h!OSpecK = HomK(L,K) ∼= L = OSpecL

as L-vector spaces. By base change for the exceptional inverse image [Sta23, Tag 0E9U], there
exists an isomorphism π!OX

∼= OXL
. We conclude by Lemma 5.3 that XL is a splinter, since

H0(XL,OXL
) = H0(X,OX)×K L = L

by flat base change. Now assume K → L is any algebraic field extension and take a finite cover
f : Y → XL. Since f is defined by finitely many equations and L is algebraic over K, we can find
a finite cover f ′ : Y ′ → XL′ such that K ⊆ L′ ⊆ L is an intermediate extension, finite over K,
and f = f ′ ×L′ L is the base change of f ′. By the previous argument XL′ is a splinter, thus
OXL′ → f ′

∗OY ′ admits a section s : f ′
∗OY ′ → OXL′ . Now pulling back to XL and using flat base

change, we obtain the desired section of OXL
→ f∗OY . □

Corollary 5.10. Let X be a connected proper scheme over a field k such that H0(X,OX) is a
separable extension of k. Then, for any algebraic field extension K of k, the scheme XK := X ×k K
is a splinter if and only if X is a splinter.

Proof. The “only if” part of the corollary follows from Lemma 5.1. Let k̄ be an algebraic closure
of k. By the assumption on H0(X,OX), Xk̄ := X ×k k̄ is isomorphic to the disjoint union of
dimk H

0(X,OX) copies of X ×H0(X,OX) k̄. By the “if” part of Proposition 5.9, if X is a splinter,
then Xk̄ is a splinter. By Lemma 5.1, we get that XK is a splinter. □

Corollary 5.11. Let X be a connected proper scheme over a field k. If X is a splinter, then
H0(X,OX) is a field, and X, considered as a scheme over SpecH0(X,OX), is geometrically normal.

Proof. By Proposition 3.5, a splinter is normal. In particular, H0(X,OX) is a field. The corollary
then follows from Proposition 5.9. □

Remark 5.12 (Algebraic base change for globally +-regular pairs). Let X be a connected normal
proper scheme over a field k such that H0(X,OX) is a field, and let ∆ be an effective Q-Weil
divisor on X. Let L be an algebraic field extension of H0(X,OX). The arguments of the proof of
Proposition 5.9 show that if (X,∆) is globally +-regular, then XL := X ×H0(X,OX) L is normal
and the pair (XL,∆L) is globally +-regular.

https://stacks.math.columbia.edu/tag/0E9U
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Assume in addition that H0(X,OX) is a separable extension of k, and let K be any algebraic
extension of k. As in Corollary 5.10, we have that if (X,∆) is globally +-regular, then XK := X×kK
is normal and the pair (XK ,∆K) is globally +-regular.

6. Lifting and descending global F -regularity

The first aim of this section is to show that the results of Section 5 regarding splinters, notably
Lemma 5.3, extend to the globally F -regular setting ; see Proposition 6.4. The second aim is
to show how the criterion of Schwede–Smith (recalled in Theorem 6.1) can be used to establish
further results in the global F -regular setting ; for instance, we show in Proposition 6.7 that global
F -regularity is stable under product and, combined with Proposition 6.4, use it to recover in
Proposition 6.9 a result of [Gon+15] stating that global F -regularity for normal proper schemes
over an F -finite field is stable under base change of fields. Except for Theorem 6.1, which is due to
Schwede–Smith, the results of this section will not be used in the rest of the paper.

6.1. A criterion for global F -regularity. The following criterion of Schwede–Smith makes it
possible in practice to reduce checking that a variety is globally F -regular to simply check that
OX → F e

∗OX(D) splits for one specific Weil divisor D.

Theorem 6.1 ([SS10, Thm. 3.9]). Let X be a normal variety over an F -finite field of positive
characteristic. Then X is globally F -regular if and only if there exists an effective Weil divisor D
on X such that

(i) there exists an e > 0 such that the natural map OX → F e
∗OX(D) splits, and

(ii) the variety X \D is globally F -regular.

Remark 6.2. Suppose X is a normal projective variety over an F -finite field of positive characteristic.
If D is an ample divisor on X, the variety X \D is affine and therefore globally F -regular if and
only if its local rings are strongly F -regular. Since regular local rings are strongly F -regular, a
smooth projective variety X over an F -finite field of positive characteristic is globally F -regular if
and only if OX → F e

∗OX(D) splits for some ample divisor D.

6.2. Descending global F -regularity. The following Lemma 6.3, which is due to Schwede–Smith,
holds in particular when the map OX → π∗OY is an isomorphism, e.g., when π : Y → X is flat
proper with geometrically connected and geometrically reduced fibers, or when π : Y → X is
birational and X is a normal proper variety.

Lemma 6.3 ([SS10, Cor. 6.4]). Let π : Y → X be a morphism of varieties over an F -finite field of
positive characteristic. If Y is normal globally F -regular and if the map OX → π∗OY is split, then
X is normal globally F -regular.

Proof. By Proposition 3.10, Y is a splinter and, by Lemma 5.1, X is a splinter. Hence, by
Proposition 3.5, X is normal. We can now apply [SS10, Cor. 6.4]. □

6.3. Lifting global F -regularity. The following Proposition 6.4 is the analogue of Lemma 5.3
and Proposition 5.4. Under the more restrictive assumptions that X is projective and Gorenstein
and that π is birational, Proposition 6.4(ii) was previously established in [GT16, Lem. 3.3].

Proposition 6.4. Let π : Y → X be a proper surjective morphism of separated schemes of finite
type over an F -finite field k of characteristic p > 0 such that either H0(Y,OY ) is a field or
H0(X,OX) = H0(Y,OY ). Assume that π!OX

∼= OY , and assume either of the following conditions :

(i) π is finite, or
(ii) X is quasi-projective.

If X is a normal globally F -regular variety, then Y is a normal globally F -regular variety.

Proof. We first prove (i). By Proposition 3.10, X is a splinter, and it follows from Lemma 5.3 that
Y is a splinter and hence is normal. By normality of X, the complement of Xreg has codimension
at least 2, and by finiteness of π, the complement of π−1(Xreg) in Y has codimension at least 2.
Therefore, by Lemma 4.4, Y is globally F -regular if and only if π−1(Xreg) ⊆ Y is globally F -regular.
Replacing X by Xreg we can and do assume that X is regular. Since Y is normal, Ysing is a proper
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closed subset of Y and since π is finite, π(Ysing) ⊆ X is also a proper closed subset. Let U ⊆ X
be an affine open subset in the complement of π(Ysing). By [Sta23, Tag 0BCU], D := X \ U has
codimension 1, so defines a Weil divisor on X. Since X is regular, D is further Cartier and π∗OX(D)
is a line bundle. Note that the pullback π∗D = π−1(D) of D is a Cartier divisor [Sta23, Tag 02OO].
Let σD : OX → OX(D) be the global section defined by the divisor D. Then the pullback π∗σD

defines a global section of π∗OX(D) whose zero locus is precisely π−1(D). Thus π∗σD is the global
section of π∗OX(D) = OY (π

∗D) defined by the divisor π∗D [Sta23, Tag 0C4S].
Now π−1(U) = Y \ π∗D is an affine open subset contained in the regular locus of Y , so is

strongly F -regular. By Theorem 6.1, it is enough to show that there exists an e > 0 such that the
map OY → F e

∗OY (π
∗D) splits. Since X is globally F -regular, there exists an integer e > 0 and a

splitting s such that

idOX
: OX → F e

∗OX
F e

∗ (σD)−−−−−→ F e
∗OX(D)

s−→ OX .

Since X is a splinter, we have a splitting

idOX
: OX

η−→ π∗OY
t−→ OX .

Here η : idCohX → π∗π
∗ is the counit of the adjunction π∗ ⊣ π∗. Note that by the projection

formula, t induces a splitting of η : OX(D)→ π∗π
∗OX(D) which by abuse we still denote by t. The

commutative diagram

OX π∗π
∗OX π∗OY

F e
∗OX F e

∗π∗π
∗OX π∗F

e
∗OY

F e
∗OX(D) F e

∗π∗π
∗OX(D) π∗F

e
∗OY (π

∗D)

η

fe fe fe

F e
∗ (η)

F e
∗ (σD) F e

∗π∗π
∗(σD) π∗F

e
∗ (π

∗σD)

F e
∗ (η)

s

F e
∗ (t)

shows that the map

(6.5) π∗F
e
∗ (π

∗σD) ◦ fe ◦ η : OX → π∗F
e
∗OY (π

∗D)

splits. Here, fe : OX → F e
∗OX denotes the pe-th power map on local sections.

As in Lemma 5.3 we consider the diagram

HomOY
(F e

∗OY (π
∗D),OY ) HomOY

(OY ,OY )

HomOY
(F e

∗OY (π
∗D), π!OX) HomOY

(OY , π
!OX)

HomOX
(π∗F

e
∗OY (π

∗D),OX) HomOX
(π∗OY ,OX)

HomOX
(OX ,OX) HomOX

(OX ,OX).

∼=

−◦π∗σD

∼=

=

−◦π∗σD

=

−◦π∗F
e
∗ (π

∗σD)◦fe◦η

−◦π∗F
e
∗ (π

∗σD)◦fe

−◦ηπ

Since the splitting of (6.5) is equivalent to the left-vertical map − ◦ π∗F
e
∗ (π

∗σD) ◦ fe ◦ η being
surjective, we conclude, as in the proof of Lemma 5.3, that the map − ◦ π∗σD is surjective, or
equivalently, that OY → F e

∗OY (π
∗D) splits.

We now prove (ii). By Proposition 3.10, X is a splinter, so a derived splinters since k is of positive
characteristic [Bha12, Thm. 1.4]. It follows from Proposition 5.4 that Y is a splinter and hence is
normal. By Remark 2.4, π is generically finite. Let U ⊆ X be an affine regular dense open subset
such that the restriction of π to U is finite. After possibly further shrinking U we can assume that
π−1(U) is also regular. Since restriction to open subschemes commutes with exceptional inverse
image functors [Sta23, Tag 0G4J], we have π|!UOU

∼= Oπ−1(U). Since X is quasi-projective, any

https://stacks.math.columbia.edu/tag/0BCU
https://stacks.math.columbia.edu/tag/02OO
https://stacks.math.columbia.edu/tag/0C4S
https://stacks.math.columbia.edu/tag/0G4J
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Weil divisor on X is dominated by a Cartier divisor. Thus, by possibly further shrinking U , we
may and do assume that D := X \ U is a Cartier divisor. Since π−1(U) is affine an regular, it is
enough to show, by Theorem 6.1, that there exists an e > 0 such that the map OY → F e

∗OY (π
∗D)

splits. By using the same diagrams as in (i) with π∗ replaced by Rπ∗, we conclude that a splitting
of OX → F e

∗OX(D) induces a splitting of OY → F e
∗OY (π

∗D). □

Remark 6.6. By using the version of Theorem 6.1 for pairs, i.e., the original [SS10, Thm. 3.9], we
leave it to the reader to show the following version of Proposition 6.4(i) for pairs. Let π : Y → X
be a finite surjective morphism of separated schemes of finite type over an F -finite field k of
characteristic p > 0, and let ∆ be an effective Q-Weil divisor on X. Assume that π!OX

∼= OY ,
and that either H0(Y,OY ) is a field or H0(X,OX) = H0(Y,OY ). If X is normal and if (X,∆) is
globally F -regular, then Y is normal and (Y, π∗∆) is globally F -regular.

6.4. Products of globally F -regular varieties. As far as we know, it is unknown whether the
splinter property is stable under product. On the other hand, global F -regularity for products is
more tractable since the Frobenius of a product is the product of the Frobenii and since one may
use the criterion of Theorem 6.1 to check global F -regularity for one specific divisor. The following
Proposition 6.7 generalizes [Has03, Thm. 5.2], where the case of products of projective globally
F -regular varieties was dealt with by taking affine cones.

Proposition 6.7. Let X and Y be normal varieties over a perfect field k of positive characteristic.
Then, X and Y are globally F -regular if and only if their product X ×k Y is globally F -regular.

Proof. Denote by πX and πY the natural projections from X ×k Y to X and Y , resp. Since X and
Y are normal and k is perfect, their product X ×k Y is normal, see [Sta23, Tag 038L]. Moreover,
X \Xreg and Y \ Yreg both have codimension ≥ 2 and thus X ×k Y \Xreg ×k Yreg has codimension
≥ 2. Therefore, by Lemma 4.4, we can assume without loss of generality that X and Y are smooth
over k.

Assume first that X ×k Y is globally F -regular. As in Remark 5.2, since π∗OX×kY =
OX ⊗k H0(Y,OY ), any splitting of the k-linear map k → H0(Y,OY ), 1 7→ 1Y provides a split-
ting to the natural map OX → π∗OX×kY . By Lemma 6.3, it follows that X is globally F -regular.

For the converse, we first note that there exist effective Cartier divisors D on X and E on Y
such that X \D and Y \ E are affine. Indeed, since X and Y are normal and k is perfect, they
admit dense affine open subsets, and then use the fact that the complement of a dense affine open
subset is a divisor by [Sta23, Tag 0BCU]. The divisors obtained this way are a priori Weil divisors,
but since X and Y are smooth, they are actually Cartier divisors. Since k is assumed to be perfect,

X \D ×k Y \ E = X ×k Y \ π∗
XD ∪ π∗

Y E

is smooth and affine, so in particular strongly F -regular. By Theorem 6.1 it is enough to show that
the map

OX×Y → F e
∗OX×Y → F e

∗OX×Y (π
∗
XD + π∗

Y E)

splits for some e > 0. Since X is globally F -regular, we can find an e > 0 such that OX → F e
∗OX(D)

splits and similarly for Y . As remarked in [Smi00, p. 558], if OX → F e
∗OX(D) splits for some e > 0,

then OX → F e′

∗ OX(D) splits for all e′ ≥ e. Thus, there exists an integer e > 0 such that both
OX → F e

∗OX(D) and OY → F e
∗OY (E) split. The morphism

σπ∗
XD+π∗

Y E : OX×Y → OX×Y (π
∗
XD + π∗

Y E)

can be identified with the tensor product π∗
XσD ⊗ π∗

Y σE , where

σD : OX → OX(D) and σE : OY → OY (E)

denote the corresponding morphisms on X and Y . Pushing forward along Frobenius, we obtain

F e
∗σπ∗

XD+π∗
Y E = π∗

XF e
∗σD ⊗ π∗

Y F
e
∗σE .

We conclude, by taking the tensor product of the sections of OX → F e
∗OX(D) and OY → F e

∗OY (E),
that

OX×Y → F e
∗OX×Y (π

∗
XD + π∗

Y E)

splits. Hence X ×k Y is globally F -regular. □

https://stacks.math.columbia.edu/tag/038L
https://stacks.math.columbia.edu/tag/0BCU
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Remark 6.8. By using the version of Theorem 6.1 for pairs, i.e., the original [SS10, Thm. 3.9], we
leave it to the reader to show the following version of Proposition 6.7 for pairs : Let X and Y be
normal varieties over a perfect field k of positive characteristic, and denote by πX : X×kY → X and
πY : X ×k Y → Y the natural projections. Let ∆X and ∆Y be effective Q-Weil divisors on X and
Y , resp. Then, (X,∆X) and (Y,∆Y ) are globally F -regular if and only if (X ×k Y, π

∗
X∆X + π∗

Y ∆Y )
is globally F -regular.

6.5. Global F -regularity and base change of field. By using the lifting Proposition 6.4, it
is possible to show that the base change results for splinters along algebraic field extensions of
Section 5.3 also hold for normal global F -regular varieties. However, by using the criterion of
Schwede–Smith [SS10, Thm. 3.9], Gongyo–Li–Patakfalvi–Schwede–Tanaka–Zong [Gon+15] have
established a more general base change results that deals with not necessarily algebraic extensions.

Proposition 6.9 (Gongyo–Li–Patakfalvi–Schwede–Tanaka–Zong [Gon+15]). Let X be a normal
proper scheme over an F -finite field k. Assume that (X,∆) is globally F -regular. Then, for
any F -finite field extension L of k with a morphism SpecL → SpecH0(X,OX), the scheme
XL := X ×H0(X,OX) L is normal and the pair (XL,∆L) is globally F -regular.

Proof. Let us provide an alternate proof. We may and do assume X is connected. Since any divisor
on XL is defined over a finitely generated field extension of the field H0(X,OX), we may assume
that L is a simple extension of H0(X,OX). If L is algebraic, we can apply Proposition 6.4, while
if L is purely transcendental, we can apply Proposition 6.7 (or Remark 6.8 in case ∆ ̸= 0) and
Lemma 4.5 to X ×H0(X,OX) A1 → A1. Note that in this situation it is not necessary to assume that

H0(X,OX) is perfect as Xreg ×H0(X,OX) A1 is regular. □

Remark 6.10. Our proof of Proposition 6.9 shows that one could extend Proposition 5.9 concerned
with base change of splinters along algebraic field extensions to arbitrary field extensions if one
could establish that the splinter property is stable under taking product with the affine line A1.

Corollary 6.11 ([Gon+15, Cor. 2.8]). Let X be a connected normal proper scheme over an F -finite
field k. Assume that H0(X,OX) is a separable extension of k and that (X,∆) is globally F -regular.
Then, for any F -finite field extension K of k, the scheme XK := X ×k K is normal and the pair
(XK ,∆K) is globally F -regular.

7. Finite torsors over splinters

We say that a morphism π : Y → X of schemes over a scheme S is a finite torsor if it is a torsor
under a finite group scheme G over S. The aim of this section is to prove Theorem (A). First, in
order to apply our lifting Lemma 5.3 to finite torsors over splinters, we have :

Lemma 7.1. Let π : Y → X be a morphism of Noetherian schemes over a Noetherian ring R.
Assume that π satisfies either of the following conditions :

(i) π is finite étale.
(ii) π is a finite torsor, and Pic(SpecR) = 0, e.g. R is a local ring or a UFD.

Then π!OX
∼= OY .

Proof. Case (i) is covered by [Sta23, Tag 0FWI]. Concerning case (ii), this is claimed in [BM76,
p. 222] in the special case where R is a field and we provide here a proof. For finite morphisms,
the exceptional inverse image functor is defined at the level of coherent sheaves and we have
π∗π

!OX
∼= HomOX

(π∗OY ,OX) ; see [Sta23, Tag 0AU3]. Thus to show that π!OX
∼= OY , we must

produce an isomorphism of π∗OY -modules

π∗OY

∼=−→ HomOX
(π∗OY ,OX),

or equivalently produce an OX -linear map TrY/X : π∗OY → OX such that the symmetric bilinear
form TrY/X(α · β) on the locally free sheaf π∗OY with values in OX is nonsingular. Such a map
is provided for finite G-torsors Y → X over a field by [CR22, Thm. 3.9]. (Note from e.g. [Bri17,
Prop. 2.6.4 & 2.6.5(i)] that any finite G-torsor is a finite G-quotient in the sense of [CR22, Rmk. 2.3].)

https://stacks.math.columbia.edu/tag/0FWI
https://stacks.math.columbia.edu/tag/0AU3
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In the general case, where R is a Noetherian ring with trivial Picard group, let G be a finite
group scheme over R. Since G is flat over R, H := H0(G,OG) is a finitely generated projective
Hopf algebra with antipode. The dual Hopf algebra H∨ = HomR(H,R) is also a finitely generated
projective Hopf algebra with antipode. Since Pic(SpecR) = 0, H∨ admits the additional structure
of a Frobenius algebra [Par71, Thm. 1]. By [Par71, Thm. 3 & Discussion on p. 596] the R-submodule∫ l

H∨ ⊆ H∨ of left integrals is freely generated by a nonsingular left integral TrG ∈ H∨. If π : Y → X
is a G-torsor over R, one constructs by pulling back TrG along X → SpecR as in [CR22, §3.1, p. 12]
an OX -linear map TrY/X : π∗OY → OX . Since TrG is nonsingular, arguing as in [CR22, Thm. 3.9]
shows that the bilinear form (α, β) 7→ TrY/X(α · β) is nonsingular. □

Remark 7.2. Let π : Y → X be a finite torsor with X separated of finite type over a Noetherian
ring R such that R admits a dualizing complex and Pic(SpecR) = 0. As explained in Remark 2.3,
Lemma 7.1 implies that π∗ω•

X
∼= ω•

Y . In particular, if X is Gorenstein, then Y is Gorenstein.
Likewise, if X is Cohen–Macaulay, then Y is Cohen–Macaulay.

We have the following lemma from [Bha+22] :

Lemma 7.3 ([Bha+22, Lem. 6.6]). Let X → SpecR be a Noetherian Nagata scheme over a ring
R. Then the following are equivalent :

(i) The scheme X is a splinter.
(ii) For each closed point z ∈ SpecR the base change to the localization XRz

is a splinter.

Further, assume X is in addition normal and excellent and let ∆ be an effective Q-Weil divisor on
X. Then the following are equivalent :

(i) The pair (X,∆) is globally +-regular.
(ii) For each closed point z ∈ SpecR the base change to the localization (XRz ,∆Rz ) is globally

+-regular.

Proof. Our assumptions are less restrictive than the setup of [Bha+22, §6], but the proof of [Bha+22,
Lem. 6.6] works as we outline below. We only consider the case where X is excellent, since the case
where X is only Nagata and ∆ = 0 is proven by the same argument (note that both conditions
imply that X is normal).

Working on each connected component of X separately, we can and do assume that X is integral.
If f : Y → X is a finite cover with Y normal, we have to show that the evaluation-at-1 map

HomOX
(f∗OY (⌊f∗∆⌋),OX)→ H0(X,OX)

is surjective. As argued in the proof of [Bha+22, Lem. 6.6], using flat base change this is equivalent
to the surjectivity of the evaluation-at-1 map

HomOXRz
(f∗OY (⌊f∗∆|XRz

⌋),OXRz
)→ H0(XRz

,OXRz
)

for every closed point z ∈ SpecR. To conclude, it is enough to observe that any finite surjective
morphism h : Y ′ → XRz

with normal and integral Y ′ is the localization of a finite surjective
morphism Y → X with Y normal. Indeed, since X is Nagata, so is XRz

[Sta23, Tag 032U].
Therefore, such Y → X is provided by taking the normalization of OX in the fraction field K(Y ′),
see [Sta23, Tag 0AVK]. □

Proposition 7.4. Let π : Y → X be a morphism of Noetherian Nagata schemes over a Noetherian
ring R such that either H0(Y,OY ) is a field or H0(X,OX) = H0(Y,OY ). Assume that π satisfies
either of the following conditions :

(i) π is finite étale.
(ii) π is a finite torsor.

If X is a splinter, then Y is a splinter.

Proof. Let z ∈ SpecR be a closed point. By flat base change H0(XRz
,OXRz

) = H0(X,OX)⊗R Rz

and H0(YRz
,OYRz

) = H0(Y,OY )⊗R Rz. By Lemma 7.3 we can reduce to the case where R is a

local ring so that Pic(SpecR) = 0. From Lemma 7.1 we know that π!OX
∼= OY for any finite étale

https://stacks.math.columbia.edu/tag/032U
https://stacks.math.columbia.edu/tag/0AVK
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or finite torsor morphism π : Y → X. With the additional assumption that H0(Y,OY ) is a field or
H0(X,OX) = H0(Y,OY ), Lemma 5.3 shows that Y is a splinter. □

We say that a morphism of schemes π : Y → X over k is quasi-étale (resp. a quasi-torsor) if
there exists U ⊆ X open with codimX(X \ U) ≥ 2 such that f |f−1(U) is étale (resp. a torsor under
a group scheme G over k). The following proposition, which complements and extends [Bha+22,
Prop. 6.20], will not be used in this work but might be of independent interest.

Proposition 7.5. Let π : Y → X be a morphism of normal Noetherian Nagata schemes over a
Noetherian ring R such that either H0(Y,OY ) is a field or H0(X,OX) = H0(Y,OY ). Assume that
π satisfies either of the following conditions :

(i) π is finite quasi-étale.
(ii) π is a finite quasi-torsor.

If X is a splinter, then Y is a splinter.
Assume in addition that X is excellent and let ∆ be an effective Q-Weil divisor on X. If (X,∆) is
globally +-regular, then (Y, π∗∆) is globally +-regular.

Proof. We only provide a proof in case X is excellent and (X,∆) is globally +-regular since the case
where X is only assumed to be Nagata and a splinter follows by the same argument with ∆ = 0.

Using Lemma 7.3 we can reduce to the case where R is local so that Pic(SpecR) = 0. By
assumption, there exists an open subset U ⊆ X such that codimX(X \ U) ≥ 2 and such that
π|U : V := π−1(U)→ U is finite étale or a finite torsor. Thus, by Lemma 7.1, π!

UOU
∼= OV . Since

Y is assumed to be normal, we can work on each connected component of Y separately and assume
without loss of generality that Y is connected. Since π is finite, Y \ V has codimension at least 2
in Y . Since X and Y are normal, we have H0(U,OU ) = H0(X,OX) and H0(V,OV ) = H0(Y,OY ).
Lemma 5.8 shows that (V, π∗∆|V ) is globally +-regular. We conclude with Remark 4.2 that (Y, π∗∆)
is globally +-regular. □

Remark 7.6. By replacing the use of Lemma 5.8 with Proposition 6.4 (or rather Remark 6.6) and
the use of Remark 4.2 with Lemma 4.4 in the proof of Proposition 7.5, one obtains the following
statement. Let π : Y → X be a finite morphism of normal varieties over an F -finite field such
that either H0(Y,OY ) is a field or H0(X,OX) = H0(Y,OY ). Assume that π is quasi-étale or a
quasi-torsor, and let ∆ be an effective Q-Weil divisor on X. If (X,∆) is globally F -regular, then
(Y, π∗∆) is globally F -regular. This extends [PZ20, Lem. 11.1] where the quasi-étale case was
treated.

We now focus on finite torsors over proper splinters over a field. The following lemma can
be found in [Mum70, Thm. 2, p. 121] (we thank Michel Brion for bringing this reference to our
attention). We provide an alternate proof based on Hirzebruch–Riemann–Roch for (not necessarily
smooth) proper schemes over a field.

Lemma 7.7. Let X be a proper scheme over a field k and let π : Y → X be a morphism of schemes
over k. Assume that π satisfies either of the following conditions :

(i) π is finite étale.
(ii) π is a finite torsor.

Then χ(OY ) = deg(π)χ(OX).

Proof. We first establish (ii). Recall that there is a Hirzebruch–Riemann–Roch formula

χ(E) =

∫
X

ch(E) ∩ td(X)

for any vector bundle E on a proper scheme X over a field ; see [Ful98, Cor. 18.3.1]. In particular,
the Euler characteristic only depends on the class of the Chern character ch(E) ∈ A∗(X)Q, where
A∗(X)Q denotes the Chow cohomology [Sta23, Tag 0FDV] with Q-coefficients. Assume π : Y → X is
a torsor under a finite group scheme G over k. By definition of a G-torsor, the product Y ×X Y → Y
is isomorphic to G×k Y → Y as schemes over Y . This gives an isomorphism

π∗OY ⊗ π∗OY
∼= π∗O

⊕n
Y ,

https://stacks.math.columbia.edu/tag/0FDV
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where n = deg(π) is the order of G. Since π is finite flat, π∗OY is a vector bundle (of rank n) on X,
and hence by [Sta23, Tag 02UM] we have the identity

ch(π∗OY ) · ch(π∗OY ) = n ch(π∗OY ) in A∗(X)Q.

Since ch(π∗OY ) is a unit in A∗(X)Q, we obtain ch(π∗OY ) = n ch(OX). By Hirzebruch–Riemann–
Roch, the equality χ(π∗OY ) = χ(OY ) = nχ(OX) follows. If π is finite étale, one can use
Grothendieck–Riemann–Roch for proper schemes over a field [Ful98, Thm. 18.3], while noting that
the relative Todd class td(Tπ) is equal to 1. Alternatively one can reduce to case (ii) as follows.
There exists a Galois cover ρ : Y ′ → X that dominates π ; see [Sta23, Tag 03SF]. We then have a
diagram

Y ′ Y

X

ρX

ρY

π

where ρX is a finite AutX(Y ′)-torsor and ρY is a finite AutY (Y
′)-torsor. □

Theorem 7.8. Let X be a proper scheme over an integral Noetherian scheme S of positive
characteristic and let π : Y → X be a morphism of schemes over S. Assume that H0(X,OX) =
H0(Y,OY ). In addition, assume either of the following conditions :

(i) π is finite étale.
(ii) π is a finite torsor.

If X is a splinter, then π is an isomorphism.

Proof. Let η be the generic point of S. It is is enough to show that the restriction πη : Yη → Xη of
π to η is an isomorphism. By Lemma 4.3, if X is a splinter, then Xη is a splinter. Therefore, we
may and do assume that S is the spectrum of a field. Moreover, since a splinter is normal, we may
and do assume that X is connected, in which case H0(X,OX) is a field. By Proposition 7.4, Y is a
splinter. Since the structure sheaf of a proper splinter in positive characteristic has trivial positive
cohomology by Proposition 3.6, we have χ(OX) = χ(OY ) = 1, where the dimension is taken with
respect to the field H0(X,OX) and we conclude with Lemma 7.7 that π is an isomorphism. □

Theorem 7.9. Let X be a connected proper scheme over a field k of positive characteristic with a
k-rational point x ∈ X(k). Assume that X is a splinter.

(i) If k is separably closed, then the étale fundamental group πét
1 (X,x) of X is trivial.

(ii) (Theorem (A)) The Nori fundamental group πN
1 (X,x) of X is trivial.

Proof. Statement (i) follows from Theorem 7.8 since for k separably closed any connected finite
étale cover π : Y → X satisfies H0(Y,OY ) = H0(X,OX) = k. For statement (ii), first note that the
Nori fundamental group πN

1 (X,x) is well-defined as a splinter is reduced. Assume for contradiction
that πN

1 (X,x) is nontrivial. Since πN
1 (X,x) is pro-finite [Nor82], there is a surjective group scheme

homomorphism πN
1 (X,x) ↠ G to a nontrivial finite group scheme G. By [Nor82, Prop. 3, p. 87],

there exists a G-torsor Y → X with H0(Y,OY ) = H0(X,OX). This contradicts Theorem 7.8. □

Remark 7.10 (On the triviality of the Nori fundamental group). As mentioned in Corollary 5.11, a
connected proper splinter X is geometrically normal, hence geometrically reduced, over the field
K := H0(X,OX) ; in particular it acquires a rational point after some finite separable field extension
of K. Moreover, recall the general facts that Nori’s fundamental group is invariant under separable
base change, and that the triviality of Nori’s fundamental group is independent of the choice of
base point.

We say that a finite étale cover π : Y → X is trivial if it is isomorphic over X to a disjoint union
of copies of X. We say that a finite torsor π : Y → X under a finite group scheme G over k is trivial
if it is isomorphic to X ×k G over X. An immediate consequence of Theorem 7.9 is the following :

Corollary 7.11. Let X be a connected proper scheme over a field k of positive characteristic.
Assume that X is a splinter.

(i) If k is separably closed, then any finite étale cover of X is trivial.

https://stacks.math.columbia.edu/tag/02UM
https://stacks.math.columbia.edu/tag/03SF
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(ii) If k is algebraically closed, then any finite torsor over X is trivial.

Proof. Statement (i) is clear from (the proof of) Theorem 7.9, while statement (ii) follows from the
fact [Nor82] that for a k-point of x ∈ X(k) there is an equivalence of categories between the category
of finite torsors Y → X equipped with a k-point y ∈ Y (k) mapping to x and the category of finite
group schemes G over k equipped with a k-group scheme homomorphism πN

1 (X,x)→ G. □

8. Proper splinters have negative Kodaira dimension

Let X be a Gorenstein projective scheme over a field k of positive characteristic. Since −KX big
implies that X has negative Kodaira dimension, it is expected in view of Conjecture 3.12 that, if X
is a splinter, then its Kodaira dimension is negative. In this section, we confirm this expectation
(without assuming X to be Gorenstein) and prove Theorem (B).

Let X be a normal proper variety over a field k and let D be a Weil divisor on X. We define the
Iitaka dimension of D to be

κ(X,D) := min
{
k | (h0(X,OX(dD))/dk)d≥0 is bounded

}
.

By convention, if h0(X,OX(dD)) = 0 for all d > 0, then we set κ(X,D) = −∞. Beware that
we deviate from usual conventions as the Iitaka dimension is usually defined for line bundles on
projective varieties. If X is a smooth projective variety over k, κ(X,KX) agrees with the Kodaira
dimension of X. The following proposition refines the observation from Lemma 3.7 showing that if
X is a proper splinter in positive characteristic, then KX is not effective.

Theorem 8.1 (Theorem (B)). Let X be a positive-dimensional connected proper scheme over a
field of positive characteristic. If X is a splinter, then κ(X,KX) = −∞.

First we have the following variant of a well-known lemma ; see, e.g., [PST17, Ex. 2.12].

Lemma 8.2. Let X be a proper scheme over a field k of positive characteristic p > 0. Assume
either of the following conditions :

(i) X is a splinter, or
(ii) X is normal and F -split, and k is F -finite.

Then the Weil divisor (1 − p)KX is effective. In particular, either κ(X,KX) = −∞, or KX is
torsion (in which case κ(X,KX) = 0).

Proof. First assume that X is a splinter. Since X is normal, we can and do assume that X is
connected. After replacing the base field k by H0(X,OX), we consider the base change π : Xk̄ → X
along an algebraic closure k → k̄. By Proposition 5.9, Xk̄ is a splinter. The base change formula for
the exceptional inverse image [Sta23, Tag 0E9U] shows that π∗ωX = ωXk̄

. Thus, it is enough to show

the statement for Xk̄, since π flat implies H0(Xk̄, π
∗OX((1−p)KX)) = H0(X,OX((1−p)KX))⊗k k̄.

Since k̄ is F -finite, Xk̄ is in particular F -split. Thus, it is enough to show the statement under the
assumptions (ii).

Assume that X is normal, F -split and that k is F -finite. Parts of the arguments below can for
example be found in [SS10, §4.2]. We provide nonetheless a proof for the sake of completeness.
First note that the absolute Frobenius F : X → X is a finite map. Thus we have for any coherent
sheaf F on X the isomorphism

HomOX
(F∗F, ωX) = F∗ HomOX

(F, F !ωX).

This is clear if X is Cohen–Macaulay as then ω•
X = ωX [−dimX], but it is also true if X is only

assumed to be normal, by restricting to the Cohen–Macaulay locus and then using that the involved
sheaves are reflexive. Choosing a (non-canonical) isomorphism F !k = Homk(F∗k, k) ∼= F∗k as
k-vector spaces, we obtain an isomorphism F !ω•

X
∼= ω•

X and further an isomorphism F !ωX
∼= ωX .

In particular, HomOX
(F∗OX , ωX) ∼= F∗ωX .

By assumption, there exists a map s such that the composition

OX → F∗OX
s−→ OX

https://stacks.math.columbia.edu/tag/0E9U
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is the identity. We apply HomOX
(−, ωX) to obtain

ωX ← F∗ωX
s∨←− ωX ,

where the composition is the identity. After restricting to the regular locus, we can twist with ω−1
Xreg

and apply the projection formula to obtain a diagram

OXreg
← F∗OXreg

((1− p)KXreg
)

s∨←− OXreg
,

where the composition is the identity. Using that the involved sheaves are reflexive, we obtain a
nonzero global section of F∗OX((1−p)KX). This gives a nonzero element of H0(X,OX((1−p)KX)),
hence (1− p)KX is effective. If no positive multiple of KX is effective, then κ(X,KX) = −∞. So
assume that nKX is effective for some n > 0. Since n(p− 1)KX and n(1− p)KX are both effective,
n(1− p)KX is trivial by Lemma 2.1. □

Remark 8.3. Note that F -split varieties may have trivial canonical divisor. For instance, ordinary
elliptic curves and ordinary K3 or abelian surfaces are F -split ; see [BK05, Rmk. 7.5.3(i)].

In order to prove Theorem 8.1, it remains to show that the canonical divisor of a proper splinter
is not torsion. First we note that the Picard group of a proper splinter is torsion-free ; this is a
small generalization of a result of Carvajal-Rojas [CR22, Cor. 5.4] who showed that a globally
F -regular projective variety has torsion-free Picard group. In particular, this provides a proof of
Theorem 8.1 if KX is Cartier, e.g., if X is in addition assumed to be Gorenstein.

Proposition 8.4. Let X be a proper scheme over a field of positive characteristic. If X is a
splinter, then Pic(X) is torsion-free.

Proof. We argue as in [CR22, Rmk. 5.6] which is concerned with the globally F -regular case. If
L is a torsion line bundle, then it is in particular semiample and therefore if X is a splinter,
then we have χ(X,L) = h0(X,L) by [Bha12, Prop. 7.2] (recalled in Proposition 3.6). But then
0 = χ(X,L) = χ(X,OX) = 1 if L is nontrivial. This is impossible.

Alternately, one can argue using Theorem 7.8 as follows. An n-torsion line bundle L on X gives
rise to a nontrivial µn-torsor π : Y → X, where Y is defined to be the relative spectrum of the
finite OX -algebra OX ⊕L⊕ · · · ⊕Ln−1. If n > 1, we must have H0(X,L) = 0, since any nontrivial
section s : OX → L would also give a nontrivial section sn of OX , so s would be nowhere vanishing
and therefore L would be trivial. This yields the equality

H0(Y,OY ) = H0(X,π∗OY ) = H0(X,OX ⊕ L⊕ · · · ⊕ Ln−1) = H0(X,OX).

We conclude from Theorem 7.8 that if X is a splinter, then deg(π) = 1, i.e., n = 1 and L is
trivial. □

To deal with the non-Gorenstein case, we have :

Proposition 8.5. Let X be a connected positive-dimensional proper scheme over a field of positive
characteristic. If X is a splinter, then the canonical divisor KX is not torsion.

Proof. Assume for contradiction that KX is torsion of order r, i.e., that ωX |Xreg
is a torsion line

bundle of order r. By considering the relative spectrum, we obtain a µr-quasi-torsor

π : Y = SpecX

(
r−1⊕
i=0

OX(iKX)

)
→ X,

which, over Xreg, restricts to a µr-torsor π|U : V := π−1(Xreg)→ Xreg =: U .

In addition, π∗OY =
⊕r−1

i=0 OX(iKX), and by Lemma 2.1 the sheaves OX(iKX) have no nonzero
global sections for 1 ≤ i ≤ r − 1. Thus H0(V,OV ) = H0(Xreg,OXreg) = H0(X,OX), where the
second equality holds by normality of X, is a field and we conclude as in Proposition 7.4 that V
is a splinter. In particular, V is normal and therefore, by, e.g., [Sta23, Tag 035K & Tag 035E],
the normalization Y ν → Y is an isomorphism over V . Since normalization is finite, Y ν \ V has
codimension ≥ 2 and thus Y ν is a splinter by Lemma 4.1.

https://stacks.math.columbia.edu/tag/035K
https://stacks.math.columbia.edu/tag/035E
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Now π!
UOXreg

= OV holds by Lemma 7.1 and this implies π∗
UωXreg

= ωV . On the other hand,
we have isomorphisms

(πU )∗π
∗
UωXreg

∼= ωXreg
⊗OXreg

r−1⊕
i=0

ωi
Xreg

=

r⊕
i=1

ωi
Xreg
∼=

r−1⊕
i=0

ωi
Xreg
∼= (πU )∗OV

as (πU )∗OV -modules. Hence V = SpecXreg

⊕r−1
i=0 ωi

Xreg
has trivial dualizing sheaf. Consequently,

since ωY ν is a reflexive sheaf, Y ν has trivial dualizing sheaf. But, by Lemma 3.7, a proper splinter
cannot have trivial canonical sheaf. □

Proof of Theorem 8.1. The canonical divisor KX is not torsion by Proposition 8.5 (or more simply
by Proposition 8.4 if KX is Cartier, e.g. if X is Gorenstein), and it follows from Lemma 8.2 that
κ(X,KX) = −∞. □

Remark 8.6 (Torsion Weil divisors on splinters). Proper splinters may have nontrivial torsion Weil
divisor classes. Indeed, projective toric varieties are globally F -regular and in particular splinters,
and Carvajal-Rojas [CR22, Ex. 5.7] gives an example of a projective toric surface that admits a
nontrivial 2-torsion Weil divisor class.

9. Vanishing of global differential forms

Fix a perfect field k of positive characteristic p and let X be a smooth proper variety over k.
Let Ω•

X/k be the de Rham complex and recall, e.g. from [Kat70, Thm. 7.2], that there exists an

isomorphism of graded OX -modules

C−1
X :

⊕
j≥0

Ωj
X →

⊕
j≥0

Hj(F∗Ω
•
X),

whose inverse CX is the so-called Cartier operator. It gives rise for all j ≥ 0 to short exact sequences
of OX -modules

(9.1) 0→ Bj
X → Zj

X

Cj
X−−→ Ωj

X → 0,

where Bj
X denotes the j-th coboundaries and Zj

X the j-th cocycles of F∗Ω
•
X . Note that these

coincide with the image under F∗ of the coboundaries and cocycles of Ω•
X . Moreover, there is a

short exact sequence
0→ OX → F∗OX → B1

X → 0.

The proof of the following theorem is inspired by the proof of [AWZ21, Lem. 6.3.1].

Theorem 9.2 (Theorem (C)). Let X be a smooth proper variety over a field k of positive
characteristic p. If X is a splinter, then H0(X,Ω1

X) = 0.

Proof. Clearly, we may and do assume that X is connected. Let k̄ be an algebraic closure of k. It
is enough to show that H0(Xk̄,Ω

1
Xk̄

) = 0. Since X is in particular geometrically reduced over k,

H0(X,OX) is a finite separable extension of k ; see, e.g., [Sta23, Tag 0BUG]. It follows that Xk̄ is the
disjoint union of dimk H

0(X,OX) copies of X×H0(X,OX) k̄. From Proposition 5.9, we find that Xk̄ is
a splinter. Therefore it is enough to establish the theorem in case k is algebraically closed. So assume
k is algebraically closed, in which case the p-th power map k = H0(X,OX)→ H0(X,F∗OX) = k is
an isomorphism. Since by Proposition 3.6, for a splinter X, OX has zero cohomology in positive
degrees, the long exact sequence associated to

0→ OX → F∗OX → B1
X → 0

gives that Hj(X,B1
X) = 0 for all j ≥ 0. From the long exact sequence associated to (9.1), we

find that the Cartier operator induces an isomorphism H0(X,Z1
X)→ H0(X,Ω1

X). In particular,
dimH0(X,Z1

X) = dimH0(X,Ω1
X). The inclusion of closed 1-forms ker(d : Ω1

X → Ω2
X) ⊆ Ω1

X

yields an injection H0(X, ker(d : Ω1
X → Ω2

X)) ⊆ H0(X,Ω1
X). Since H0(X, ker(d : Ω1

X → Ω2
X)) =

H0(X,Z1
X), the above inclusion is in fact an equality. In other words, any global 1-form on X is

closed. By [GK03, Prop. 4.3], there exists an isomorphism

H0(X,Ω1
X) ∼= Pic(X)[p]⊗Z k,

https://stacks.math.columbia.edu/tag/0BUG
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where Pic(X)[p] denotes the p-torsion line bundles on X. By Proposition 8.4, Pic(X) is torsion-
free. □

10. On the splinter property for proper surfaces

A proper curve over an algebraically closed field of positive characteristic is a splinter if and only
if it is isomorphic to the projective line. In this section, we investigate which proper surfaces over
an algebraically closed field of positive characteristic are splinters. First we show in Proposition 10.1
that proper surface splinters are rational. We then show in Proposition 10.4 that the blow-up of
the projective plane in any number of closed points lying on a given conic is a splinter. On the
other hand, we give examples of rational surfaces that are not splinters in Section 10.3.

10.1. Proper splinter surfaces are rational. The fact proved in Theorem 8.1 that proper
splinters in positive characteristic have negative Kodaira dimension can be used to show that proper
surface splinters over an algebraically closed field of positive characteristic are rational :

Proposition 10.1. Let X be an irreducible proper surface over an algebraically closed field of
positive characteristic. If X is a splinter, then X is rational.

Proof. If X is not smooth, choose a resolution of singularities π : X̃ → X such that π is an
isomorphism over the regular locus Xreg, which exists by [Lip69, §2]. It suffices to show that X̃ is
rational. Note that Grauert–Riemenschneider vanishing holds for surfaces, see, e.g., [Sta23, Tag
0AXD]. Thus, the proof of [Bha12, Thm. 2.12] shows that the above resolution of singularities
satisfies Rπ∗OX̃ = OX , that is, that X has rational singularities. Therefore

χ(OX̃) = χ(Rπ∗OX̃) = χ(OX) = 1.

By Castelnuovo’s rationality criterion it remains to show that ω2
X̃

has no nonzero global sections.

So assume that there is a nonzero section s ∈ H0(X̃, ω2
X̃
). Then s is nonzero after restriction to

the open subset π−1(Xreg). Since π is an isomorphism over Xreg, the section s would provide a
nonzero section of OX(2KX), contradicting Theorem 8.1. □

10.2. Examples of projective rational surfaces that are splinters. We give examples of
projective rational surfaces that are splinters ; in all cases, this is achieved by showing that they are
globally F -regular. We start with already known examples.

Example 10.2 (Del Pezzo surfaces, [Har98, Ex. 5.5]). Let X be a smooth projective del Pezzo
surface over an algebraically closed field of characteristic p > 0. Then X is globally F -regular if
one of the following conditions holds :

(i) K2
X > 3,

(ii) K2
X = 3 and p > 2,

(iii) K2
X = 2 and p > 3, or

(iv) K2
X = 1 and p > 5.

Moreover, if none of the above conditions are satisfied, there are globally F -regular and non globally
F -regular cases ; for instance, the Fermat cubic threefold in characteristic 2 is not globally F -regular.

Example 10.3 (Hirzebruch surfaces, [GT16, Prop. 3.1]). If X is a Hirzebruch surface P(OP1 ⊕
OP1(−n)) over a perfect field of positive characteristic, then X is globally F -regular.

To the above list of examples, we can add blow-ups of P2 in any number of points lying on a
conic :

Proposition 10.4. Let k be an algebraically closed field of characteristic p > 0 and let p1, . . . , pn
be distinct closed points in P2

k. Assume either of the following conditions :

(i) The points p1, . . . , pn lie on a line L ⊆ P2
k.

(ii) The points p1, . . . , pn lie on a (possibly singular) conic C ⊆ P2
k.

then the blow-up X := Bl{p1,...,pn}P2
k is globally F -regular. In particular, the blow-up of P2

k in at
most 5 closed points is globally F -regular.

https://stacks.math.columbia.edu/tag/0AXD
https://stacks.math.columbia.edu/tag/0AXD
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In some sense Proposition 10.4 is optimal since by Example 10.2 the Fermat cubic surface, which
is the blow-up of P2

k in 6 points, is not globally F -regular if char k = 2. The proof adapts a strategy
which is similar to the arguments of [BK05, §§1.3-1.4]. First we determine, under the isomorphism
HomX(F∗OX ,OX) ∼= H0(X,OX((1 − p)KX)), which global sections correspond to splittings of
OX → F∗OX in the case where X = Pn

k . For the sake of completeness, we state and prove the
following lemma, which appears as an exercise in [BK05].

Lemma 10.5 (cf. [BK05, Ex. 1.3.E(1)]). Let X = Pn
k = Proj k[X0, . . . , Xn] for a field k of

characteristic p > 0. Let η : OX → F e
∗OX be the canonical map and consider the following chain of

isomorphisms

Φ: HomX(F e
∗OX ,OX)

∼=−→ ExtnX(OX , (F e
∗OX)⊗ ωX)∨

∼=−→ Hn(X,ωpe

X )∨
∼=−→ H0(X,ω1−pe

X )

where the first and last isomorphism are given by Serre duality and the second isomorphism follows
from the projection formula. Then the following diagram commutes

HomX(F e
∗OX ,OX) HomX(OX ,OX)

H0(X,OX(ω1−pe

X )) k,

−◦η

Φ ev1

τ

where ev1 is the evaluation at the constant global section 1 and τ is the map sending a homogeneous
polynomial P ∈ H0(X,OX((n + 1)(pe − 1))) of degree (n + 1)(pe − 1) to the coefficient of the
monomial (X0 · · ·Xn)

(pe−1) in P . In particular, Φ−1(P ) provides a splitting of η if and only if
τ(P ) = 1.

Proof. Recall, e.g. from [Har77, Ch. III, Thm. 5.1 & Thm. 7.1], that Serre duality for line bundles
on Pn is given by the bilinear form

H0(X,OX(a))⊗Hn(X,OX(−(n+ 1)− a))→ Hn(X,OX(−(n+ 1))) = k
1

X0 · · ·Xn

(P,Q) 7→ coefficient of (X0 · · ·Xn)
−1 in PQ,

where, for b < 0, we identify Hn(X,OX(b)) with the degree b part of the negatively graded k-algebra
(X0 · · ·Xn)

−1k[X−1
0 , . . . , X−1

n ]. Consider the following commutative diagram of isomorphisms

HomX(F e
∗OX ,OX) HomX(OX ,OX) k

H0(X,OX((1− pe)KX)) Hn(X,OX(peKX))∨ Hn(X,OX(KX))∨,

−◦η

SD SD

ev1

SD (F e∗)∨

where SD stands for Serre duality. Since F e∗ : Hn(X,OX(−(n+ 1)))→ Hn(X,OX(−pe(n+ 1)))
raises a polynomial to its pe-th power, we find that a monomial in H0(X,OX((1− pe)KX)) is sent
to 1 in k along the above diagram if it is (X0 · · ·Xn)

pe−1 and to zero otherwise. □

For X the blow-up of P2
k in n distinct closed points p1, . . . , pn ∈ P2

k, we denote by Ei the
exceptional curve over the point pi and we let H ∈ Pic(X) be the pullback of the class of a
hyperplane in P2

k. Then
Pic(X) = ZH ⊕ ZE1 ⊕ · · · ⊕ ZEn,

is an orthogonal decomposition with respect to the intersection pairing, and we have H2 = 1 and
E2

i = −1 for all 1 ≤ i ≤ n. The canonical class of X is KX = −3H +
∑

i Ei. If C ⊆ P2
k is an

irreducible curve, its strict transform C̃ ⊆ X has class

C̃ = dH −
n∑

i=1

miEi ∈ Pic(X),

where d is the degree of C and mi is the multiplicity of C at pi. Any irreducible curve in X is either
one of the exceptional curves Ei, or the strict transform of an irreducible curve in P2

k. Note that
for d > n, the divisor dH −

∑
i Ei is ample, since it has positive square and since the intersection

with any integral curve in X is positive.
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Proof of Proposition 10.4. Since X is smooth, it suffices by Theorem 6.1 (see Remark 6.2) to prove
that there exists an ample divisor D on X such that OX → F e

∗OX(D) splits for some e > 0.
Let d > 0 be an integer such that the divisor D := dH −

∑
i Ei on X is ample and fix a global

section σ : OX → OX(D). We can interpret σ as a homogeneous polynomial of degree d vanishing
at the points p1, . . . , pn. Now, as in Lemma 10.5, we have an isomorphism

Ψ: HomX(F e
∗OX(D),OX)

∼=−→ H0(X,OX((1− pe)KX −D))

and global sections of OX((1− pe)KX −D) correspond again to polynomials of a certain degree,
vanishing to some certain order at the points pi. The following claim is similar to [BK05, p. 39].

Claim. A section φ ∈ H0(X,OX((1− pe)KX −D)) defines a section of OX → F e
∗OX(D) if and

only if Ψ−1(φ)σ ∈ H0(X,OX((1− pe)KX)) defines a splitting of OX → F e
∗OX , where Ψ−1(φ)σ is

the usual product of polynomials.

Proof of the claim. A map φ ∈ HomX(F e
∗OX(D),OX) is a section of OX → F e

∗OX(D) if and only
if φ ◦ F e

∗ (σ) is a section of OX → F e
∗OX . Thus, we have to check that the composition φ ◦ F e

∗ (σ)
corresponds to the product Ψ(φ)σ. This is done by verifying, that the following diagram commutes

HomX(F e
∗OX(D),OX) HomX(F e

∗OX ,OX)

Hn(X,ωX ⊗ F e
∗OX(D))∨ Hn(X,ωX ⊗ F e

∗OX)∨

Hn(X,F e
∗OX(peKX +D))∨ Hn(X,F e

∗OX(peKX))∨

Hn(X,OX(peKX +D))∨ Hn(X,OX(peKX))∨

H0(X,OX((1− pe)KX −D)) H0(X,OX((1− pe)KX)). □

−◦F e
∗ (σ)

SD SD

(ωX⊗F e
∗ (σ))

∨

projection formula projection formula

(F e
∗ (OX(peKX)⊗σ))∨

(OX(peKX)⊗σ)∨

SD SD

−·σ

Denote by µ : X → P2 the blow-up map. Since µ∗OX = OP2 , µ∗ induces an isomorphism
End(OX) → End(OP2). Since any morphism of schemes commutes with the Frobenius, a map
φ : F e

∗OX → OX is a splitting of OX → F e
∗OX if and only if µ∗(φ) is a splitting of OP2 → F e

∗OP2 .
The proposition will follow if we can find suitable polynomials φ ∈ H0(X,OX((1−pe)KX−D)) and
σ ∈ H0(X,OX(D)) such that µ∗(φσ) defines a splitting of OP2 → F e

∗OP2 . In terms of Lemma 10.5,
the monomial (XY Z)p

e−1 has to occur with coefficient 1 in φσ (here we are using coordinates
P2
k = Proj k[X,Y, Z]).
We first compute

(1− pe)KX −D = 3(pe− 1)H − (pe− 1)
∑
i

Ei− dH +
∑
i

Ei = (3(pe− 1)− d)H − (pe− 2)
∑
i

Ei.

If all the points pi lie on a line L, we can assume without loss of generality that L = V (Z). Consider
the polynomials φ̃ := X(pe−1)−(d−1)Y pe−1 and σ̃ := Xd−1. Moreover, if we set φ := φ̃Zpe−2 and
σ := σ̃Z, then φ ∈ H0(X,OX((1 − pe)KX − D)) and σ ∈ H0(X,OX(D)) and the coefficient of
(XY Z)p

e−1 in φσ is 1.
If the points lie on a conic C, we can assume after possible change of coordinates that the conic

is given by an equation of the form XY − Z2, XY , or X2 ; see the elementary Lemma 10.7 below.
In the last case, the points lie on the line X = 0, thus we may assume that C is given by one of
the equations σ̃ = XY − Z2 or σ̃ = XY . Now set σ := Zd−2σ̃ and φ := Z(pe−1)−(d−2)σ̃pe−2 and
observe that (XY Z)p

e−1 occurs with coefficient 1 in φσ. □

Remark 10.6. Recall, e.g. from [Har77, Ch. IV, Prop. 4.21], that an elliptic curve C = V (P ) ⊆ P2
k

is ordinary if (XY Z)p−1 occurs with nonzero coeffcient in P p−1. The above Lemma 10.5 can also
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be used to show, similarly to [Har15, Rmk. 6.3], that the blow-up of P2
k in any number of points,

which lie on an ordinary elliptic curve, is F -split.

Lemma 10.7. Let k be an algebraically closed field. After suitable coordinate transform a conic in
P2
k is given one of the following equations :

XY − Z2, XY, or X2.

Proof. First recall that PGL3(k) acts 2-transitively on P2
k = Proj k[X,Y, Z]. In particular, PGL3(k)

acts also 2-transitively on the set of lines in P2
k, which is P(H0(P2

k,OP2
k
(1))) = P(k[X,Y, Z]deg 1). If

a conic C ⊆ P2
k is reducible, then it is either a double line or the union of two lines and we can

assume C to be defined by the equations X2 = 0 or XY = 0, resp. It remains to show that an
irreducible conic C is defined by the equation XY −Z2 = 0 after suitable coordinate transformation.
We follow the arguments of [Kir92, Cor. 3.12]. Since C has only finitely many singular points, we
can assume without loss of generality that [0 : 1 : 0] is a smooth point of C and the line Z = 0 is
tangent to C at [0 : 1 : 0]. This means that C is given by an equation of the form

(10.8) aY Z + bX2 + cXZ + dZ2,

since the line tangent to C at the point [0 : 1 : 0] is precisely the line given by the linear factors in
the dehomogenized equation defining C on the affine open {Y ̸= 0} ∼= Spec k[X,Z]. By assumption
(10.8) is an irreducible polynomial. This implies that b ̸= 0 and a ̸= 0. We conclude by noting that
XY − Z2 is mapped to (10.8) under the coordinate transformation

[x, y, z] 7→ [
√
bx, ay + cx+ dz,−z]. □

10.3. Examples of projective rational surfaces that are not splinters. In this paragraph,
we use Bhatt’s Proposition 3.6 to show that certain projective rational surfaces are not splinters.
First, we have the following example of surfaces that are not globally F -regular.

Example 10.9 ([SS10, Ex. 6.6]). Let k be an algebraically closed field of positive characteristic. If
X is the blow-up of P2

k in 9 closed points in general position, then −KX is not big. Therefore, by
Proposition 3.11, X is not globally F -regular. Furthermore, this shows that the blow-up of P2 in at
least 9 points in general position is not globally F -regular, as global F -regularity descends along
birational morphisms (Lemma 6.3).
On the other hand, we note that if X is the blow-up of P2 in 9 points lying on an ordinary elliptic
curve, then X is F -split ; see Remark 10.6. Since being ordinary is an open property, it follows that
the blow-up of P2 in 9 points in general position is F -split.

We can extend Example 10.9 and show that in some cases the blow-up of P2 in 9 points is not a
splinter :

Proposition 10.10. Let X be the blow-up of P2
k in 9 distinct k-rational points. Assume either of

the following conditions :

(i) The base field k is the algebraic closure of a finite field and the 9 points lie on a smooth
cubic curve (e.g., the 9 points are in general position).

(ii) The base field k has positive characteristic and the 9 points lie at the transverse intersection
of two cubic curves in P2

k.

Then X is not a splinter.

Proof. In both cases, we show that the anticanonical line bundle ω−1
X is semiample and satisfies

H1(X,ω−1
X ) ̸= 0. It follows from Proposition 3.6 that X is not a splinter.

In case (i), the anticanonical divisor −KX is the strict transform of the smooth cubic curve
and is therefore smooth of genus 1. Since (−KX)2 = 0, we get from [Tot09, Thm. 2.1] that −KX

is semiample, that is, there exists a positive integer n such that −nKX is basepoint free. In
particular, since KX is not torsion, h0(−nKX) ≥ 2. By Riemann–Roch χ(−nKX) = 1, and hence
h1(−nKX) ̸= 0.

In case (ii), −KX is basepoint free (in particular semiample) and satisfies h0(−KX) ≥ 2. Indeed,
−KX admits two sections, corresponding to the strict transforms of the cubics, which do not meet
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in any point in the blow-up as they pass through the 9 points in P2
k from different tangent directions.

On the other hand, we have χ(−KX) = 1 and it follows that h1(−KX) ̸= 0. □

Remark 10.11. An alternative proof of Proposition 10.10(ii) can be obtained by using Lemma 4.3.
Indeed, if the 9 blown up points lie in the intersection of two distinct smooth cubic curves, the
set of cubic curves passing through the 9 points forms a pencil and we obtain an elliptic fibration
X → P1. Since the generic fiber of this fibration is not a splinter, X is not a splinter.

Finally, further examples of rational surfaces over Fp that are not splinters are provided by the
following :

Proposition 10.12. Let k be the algebraic closure of a finite field. Let d ≥ 4 be an integer and

let C be an irreducible curve of degree d in P2
k. Let n :=

(
2+d
2

)
= (d+2)(d+1)

2 ; e.g., n = 15 if d = 4.

The blow-up X of P2
k in n distinct smooth points of C is not a splinter.

Proof. By Proposition 3.6, it suffices to construct a semiample line bundle L on X such that
H1(X,L) ̸= 0. For that purpose, we consider the class D of the strict transform of the curve C.
We have D = dH −

∑n
i=1 Ei, where H is the pullback of the hyperplane class in P2

k and Ei are the
exceptional curves lying above the n blown up points. We claim that the line bundle L := OX(D)
is semiample and satisfies H1(X,L) ̸= 0. On the one hand, D is nef since it is effective and satisfies
D2 = d2 − n > 0 for d ≥ 4. Being nef and having positive self intersection, it is also big, see, e.g.,
[Kol96, Cor. 2.16]. By Keel’s [Kee99, Cor. 0.3] any nef and big line bundle on a surface over the
algebraic closure of a finite field is semiample. On the other hand, by Riemann–Roch

χ(D) = 1 +
1

2
(D2 −KX ·D) = 1 +

1

2
(d2 + 3d− 2n) = 0,

for KX = −3H +
∑

i Ei the canonical divisor on X. Since D is effective, H0(X,L) ̸= 0, and we
conclude that H1(X,L) ̸= 0. □

11. K-equivalence, O-equivalence, and D-equivalence

The aim of this section is to study the derived-invariance of the (derived) splinter property
and of global F -regularity for projective varieties over a field of positive characteristic. For that
purpose, we introduce the notion of O-equivalence, which is closely related to K-equivalence but
offers more flexibility, and show that both, the (derived) splinter property and global F -regularity,
are preserved under O-equivalence.

11.1. K-equivalence. In this paragraph, we fix an excellent Noetherian scheme S admitting a
dualizing complex ω•

S . Any scheme X over S with structure morphism h : X → S of finite type
and separated will be endowed with the dualizing complex ω•

X := h!ω•
S [Sta23, Tag 0AU3]. If X is

normal, there is a unique, up to linear equivalence, Weil divisor KX on X such that ωX
∼= OX(KX).

The following notions are classical, at least in the case of smooth varieties over a field (where they
agree) :

Definition 11.1 (K-equivalence and strong K-equivalence). Let X and Y be integral normal
Q-Gorenstein schemes of finite type and separated over S. We say X and Y are K-equivalent
if there exists a normal scheme Z over S with proper birational S-morphisms p : Z → X and
q : Z → Y such that p∗KX and q∗KY are Q-linearly equivalent.

If in addition X and Y are Gorenstein, we say X and Y are strongly K-equivalent if there exists
a normal scheme Z over S with proper birational S-morphisms p : Z → X and q : Z → Y such that
p∗KX and q∗KY are linearly equivalent.

Obviously, if X and Y are Gorenstein and strongly K-equivalent, then they are K-equivalent.
The converse holds provided X and Y are not too singular ; see Remark 11.3 below. The following
Proposition 11.2 says, in particular, that K-equivalent normal terminal varieties are isomorphic
in codimension 1. This is certainly well-known, at least in characteristic zero, see, e.g., [Kaw02,
Lem. 4.2], but as we were not able to find a suitable reference for our more general setting, we
provide a proof. An integral normal excellent scheme X of finite type and separated over S is said

https://stacks.math.columbia.edu/tag/0AU3
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to be terminal (resp. canonical) if X is Q-Gorenstein and for any proper surjective S-morphism
f : X ′ → X, the discrepancies of the exceptional divisors are all positive (resp. nonnegative).

Proposition 11.2. Let X and Y be integral normal terminal schemes of finite type and separated
over S. If X and Y are K-equivalent, then the induced birational map X 99K Y is small in the
sense of Definition 4.6.

Proof. Let Z be a normal scheme over S with proper birational morphisms p : Z → X and q : Z → Y
such that p∗KX ∼Q q∗KY . Since X and Y are terminal, we have

p∗KX +
∑

aiEi ∼Q KZ ∼Q q∗KY +
∑

bjFj ,

where ai, bj ∈ Q>0 and Ei ⊆ Exc(p), Fj ⊆ Exc(q) are the irreducible components of codimension 1
endowed with their reduced structure. Thus, we have linearly equivalent effective Q-divisors
KZ/X =

∑
i aiEi andKZ/Y =

∑
j bjFj such that Supp(KZ/X) = Exc(p) and Supp(KZ/Y ) = Exc(q)

up to some locally closed subsets of codimension ≥ 2. Let

D := p∗KX − q∗KY = KZ/Y −KZ/X =
∑

bjFj −
∑

aiEi.

We have D ∼Q 0, and since X and Y are Q-Gorenstein, the divisor D is Q-Cartier. Note that
−D is p-nef and p∗D =

∑
j bjp∗Fj is effective. By the Negativity Lemma [Bha+22, Lem. 2.16]

(which can be applied since S is assumed to be excellent and since we can assume that p and q are
projective after applying Chow’s Lemma [Sta23, Tag 02O2] and normalizing [Sta23, Tag 035E]), D
is effective. (For the classical version of the Negativity Lemma in characteristic zero, see [KM98,
Lem. 3.39].) Arguing similarly for −D shows that −D is effective, and therefore that D = 0. Hence,
Exc(p) = Exc(q) up to some locally closed subsets of codimension ≥ 2. This proves the statement,
since p(Exc(p)) and q(Exc(q)) both have codimension ≥ 2 (a proper birational morphism to a
normal Noetherian scheme has geometrically connected fibers by [Sta23, Tag 03H0]). □

Remark 11.3. Let X and Y be integral normal Gorenstein canonical schemes of finite type and
separated over S. Employing the Negativity Lemma as in the proof of Proposition 11.2 shows that
if X and Y are K-equivalent, then they are strongly K-equivalent.

Together with Lemma 4.1, we obtain that both the splinter property and global F -regularity for
normal terminal varieties over a field of positive characteristic are invariant under K-equivalence :

Corollary 11.4. Let X and Y be K-equivalent integral normal terminal schemes of finite type and
separated over S admitting a dualizing complex. The following statements hold.

(i) X is a splinter if and only if Y is a splinter.
(ii) X is globally F -regular if and only if Y is globally F -regular, provided S = Spec k with k

an F -finite field.

Proof. This is the combination of Lemma 4.4, Proposition 4.7, and Proposition 11.2. □

Remark 11.5. Proposition 11.2 does not hold without restrictions on the singularities of X and Y .
Consider indeed any crepant morphism p : Y → X to a Gorenstein variety X over a field k, with
exceptional locus containing a divisor. Then Y = Z → X provides a strong K-equivalence between
the Gorenstein proper varieties X and Y that does not induce a small birational map. Nonetheless,
we know from Proposition 5.4 that if p : Y → X is a crepant morphism of normal varieties over
a field k of positive characteristic, then X is a splinter if and only if Y is a splinter. In the next
paragraph, we will introduce the notion of O-equivalence and will use it to circumvent going through
small birational maps to improve upon Corollary 11.4 and show that the splinter property for
Gorenstein varieties is invariant under K-equivalence ; see Theorem 11.15.

11.2. O-equivalence. Given a Noetherian scheme X, we denote by DCoh(OX) the derived category
of complexes of OX -modules with coherent cohomology sheaves. Recall, e.g. from [Sta23, Tag 08E0],
that the functor Db(X)→ DCoh(OX) is fully faithful with essential image Db

Coh(OX). We use the
formalism of the exceptional inverse image functor, as described in [Sta23, Tag 0A9Y] (under the
name of upper shriek functor), for separated schemes of finite type over a fixed Noetherian base.

https://stacks.math.columbia.edu/tag/02O2
https://stacks.math.columbia.edu/tag/035E
https://stacks.math.columbia.edu/tag/03H0
https://stacks.math.columbia.edu/tag/08E0
https://stacks.math.columbia.edu/tag/0A9Y
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Note that the exceptional inverse image functor, when defined, does not preserve in general bounded
complexes.

Definition 11.6 (O-equivalence and strong O-equivalence). Let S be a Noetherian scheme and let
X and Y be schemes of finite type and separated over S.

We say X and Y are strongly O-equivalent, if there exists a scheme Z over S with proper
birational S-morphisms p : Z → X and q : Z → Y such that p!OX

∼= q!OY holds in DCoh(OZ).
We say X and Y are O-equivalent, if there exists a scheme Z over S with proper birational

S-morphisms p : Z → X and q : Z → Y and a proper surjective morphism µ : Z̃ → Z such that
µ!p!OX

∼= µ!q!OY holds in DCoh(OZ̃).

Obviously, strong O-equivalence implies O-equivalence. As will become clear, O-equivalence
offers more generality and more flexibility than K-equivalence : in particular, it does not involve
any (Q-)Gorenstein assumption. For integral normal Gorenstein schemes, (strong) O-equivalence
and (strong) K-equivalence relate as follows :

Proposition 11.7. Let X and Y be integral normal Gorenstein schemes of finite type and separated
over an excellent Noetherian scheme S admitting a dualizing complex ω•

S. Consider the following
statements :

(i) X and Y are strongly K-equivalent.
(ii) X and Y are strongly O-equivalent.
(iii) X and Y are K-equivalent.
(iv) X and Y are O-equivalent.

Then (i)⇔ (ii)⇒ (iii)⇔ (iv). If in addition X and Y are canonical, then (i)⇔ (ii)⇔ (iii)⇔ (iv).

Proof. Let p : Z → X and q : Z → Y be birational morphisms of schemes of finite type and separated
over a Noetherian scheme S admitting a dualizing complex. Recall from Lemma 2.2 that if X
and Y are Gorenstein, then p!OX

∼= q!OY if and only if p∗ωX
∼= q∗ωY . If X is reduced, then Z is

generically reduced and hence [Sta23, Tag 0BXC] the normalization Zν → Z is birational. We thus
see that strong O-equivalence coincides with strong K-equivalence, i.e., that (i)⇔ (ii).

The implication (ii)⇒ (iv) is clear and holds without assuming X and Y to be normal Gorenstein.
For (iii)⇒ (iv), consider the cyclic covering associated to the torsion line bundle L := p∗ωX ⊗

q∗ω−1
Y , i.e.,

µ : Z̃ := SpecZ

(
r−1⊕
i=0

Li

)
→ Z,

where r is the torsion index of L. As in the proof of Proposition 8.5, we have that µ∗L = OZ̃ , i.e.,

µ∗p∗ωX
∼= µ∗q∗ωY . One concludes with Lemma 2.2 that µ!p!OX

∼= µ!q!OY .
For (iv)⇒ (iii), recall, e.g. from [Sta23, Tag 02U9], that for a proper morphism µ : Z̃ → Z and

a line bundle L on Z we have

(11.8) µ∗(c1(µ
∗L) ∩ [Z̃]) = c1(L) ∩ µ∗[Z̃] in CHdimZ−1(Z).

Assume now that X and Y are O-equivalent and let µ : Z̃ → Z, p : Z → X and q : Z → Y be as in
Definition 11.6. Up to normalizing Z̃ and Z, we may and do assume that Z is normal. By Chow’s
Lemma [Sta23, Tag 02O2] and by taking hyperplane sections, we may assume that µ is generically
finite. The condition µ!p!OX

∼= µ!q!OY together with (11.8) then imply that the Weil divisor class
associated to p∗ωX ⊗ q∗ω−1

Y is torsion, and hence by normality of Z that p∗ωX ⊗ q∗ω−1
Y is a torsion

line bundle on Z, i.e. p∗KX ∼Q q∗KY .
Finally if X and Y are canonical, then (i)⇔ (iii) by Remark 11.3. □

Moreover, under some regularity assumption, the cohomology of the structure sheaf is invariant
under strong O-equivalence :

Proposition 11.9. Let X and Y be excellent regular schemes of finite type and separated over a
Noetherian scheme S. If there exists an excellent regular scheme Z of finite type and separated over
S with projective birational morphisms p : Z → X and q : Z → Y over S such that p!OX

∼= q!OY ,
then Hi(X,OX) ∼= Hi(Y,OY ) as H0(S,OS)-modules for all i ≥ 0.

https://stacks.math.columbia.edu/tag/0BXC
https://stacks.math.columbia.edu/tag/02U9
https://stacks.math.columbia.edu/tag/02O2
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Proof. By [CR15, Thm. 1.1], both canonical maps OX → Rp∗OZ and OY → Rq∗OZ are isomor-
phisms. Using the fact that the exceptional inverse image functor commutes with shifts, we obtain
the chain of isomorphisms

Hi(Y,OY ) = HomDCoh(OY )(OY ,OY [i]) = HomDCoh(OY )(Rq∗OZ ,OY [i])

= HomDCoh(OZ)(OZ , q
!OY [i]) ∼= HomDCoh(OZ)(OZ , p

!OX [i])

= HomDCoh(OX)(Rp∗OZ ,OX [i]) = HomDCoh(OX)(OX ,OX [i]) = Hi(X,OX). □

Remark 11.10. Let X and Y be regular schemes of finite type and separated over a perfect field k.
If X and Y are strongly O-equivalent and if resolution of singularities holds for reduced schemes
of dimension dimX over k, then by applying Chow’s Lemma to Z as in Definition 11.6 and then
resolving singularities, one may choose Z to be regular. Hence, provided resolution of singularities
holds for reduced schemes of dimension dimX over k (which is the case if dimX ≤ 3 by [CP09]),
Proposition 11.9 shows that if X and Y are strongly O-equivalent, then Hi(X,OX) ∼= Hi(Y,OY )
for all i ≥ 0.

11.3. D-equivalence. The following is classical.

Definition 11.11 (D-equivalence). Two proper varieties X and Y over a field k are said to be
D-equivalent (or derived equivalent) if there is a k-linear equivalence of categories Db(X) ∼= Db(Y )
between their bounded derived categories of coherent sheaves.

Kawamata [Kaw02, Thm. 2.3(2)] showed that if X and Y are D-equivalent smooth projective
varieties over an algebraically closed field of characteristic zero and if KX or −KX is big, then X
and Y are K-equivalent. We have the same result in the broader context of normal Gorenstein
projective varieties over any field :

Proposition 11.12. Let X and Y be normal Gorenstein projective varieties over a field k. Assume
that KX or −KX is big. If X and Y are D-equivalent, then X and Y are K-equivalent and, in
particular, O-equivalent.

Proof. By [LO10, Cor. 9.17], a k-linear equivalence Db(X) ∼= Db(Y ) is induced by a Fourier–Mukai
transform with kernel K ∈ Db(X ×k Y ). Denote by πX : X ×k Y → X and πY : X ×k Y → Y the
projections to X and Y . By [Her+09, Prop. 4.2], we have a natural isomorphism

(11.13) RHomOX×kY
(K,π!

XOX) ∼= RHomOX×kY
(K,π!

Y OY ).

(Note that the proof of [Her+09, Prop. 4.2] does not require that the base field be algebraically closed.)
On the other hand, by base change [Sta23, Tag 0E9U] and since X and Y are Gorenstein, π!

XOX
∼=

Lπ∗
Y ω

•
Y = π∗

Y ωY [dimY ] and π!
Y OY

∼= Lπ∗
Xω•

X = π∗
XωX [dimX]. Thus, (11.13) is equivalent to

K∨ ∼= K∨ ⊗ π∗
XωX ⊗ π∗

Y ω
−1
Y [dimX − dimY ] where K∨ := RHomOX×kY

(K,OX×kY ).

As shown in [Her+09, Proof of Prop. 2.10], K∨ lies in Db(X ×k Y ), and hence dimX = dimY .
Let ν : Zν → Z be the normalization of an irreducible component Z of Supp(K∨) and set

p = πX ◦ ν and q = πY ◦ ν. Then, there exists i ∈ Z such that ν∗Hi(K∨)|Z generically has positive
rank r > 0. Arguing as in [Huy06, Lem. 6.9], we obtain

OZν (rp∗KX) ∼= OZν (rq∗KY ).

Since KX or −KX is big, arguing as in the proof of [Kaw02, Thm. 2.3(2)] (see also [Huy06,
Prop. 6.19]) shows that there exists a component Z that dominates X and Y and is such that p
and q are birational morphisms. This proves that X and Y are K-equivalent. By Proposition 11.7,
X and Y are also O-equivalent. □

Remark 11.14. In the same way that D-equivalent smooth proper complex varieties are not neces-
sarily strongly K-equivalent [Ueh04], D-equivalent smooth proper varieties in positive characteristic
are not necessarily strongly O-equivalent. Indeed, in [AB21], Addington and Bragg have produced
D-equivalent smooth projective threefolds over F3 with different Hodge numbers h0,i for i = 1
and 2. Such varieties are not O-equivalent by Proposition 11.9 and Remark 11.10.

https://stacks.math.columbia.edu/tag/0E9U
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11.4. Invariance of the splinter property under O-equivalence. Since a crepant morphism
p : Y → X provides an O-equivalence between Y andX, the following theorem generalizes statements
(i) and (ii) of Proposition 5.4.

Theorem 11.15 (Theorem (F), Derived splinters are stable under O-equivalence). Let X and
Y be integral schemes of finite type and separated over a Noetherian scheme S. If X and Y are
O-equivalent, then X is a derived splinter if and only if Y is a derived splinter.

Proof. Suppose X is a derived splinter. Let f : B → Y be a proper surjective morphism. We have
to show that ηf : OY → Rf∗OB splits in DCoh(OY ). Consider the diagram

Z̃ B′

Z

X Y B

µ
f ′

q′

p q

f

where µ : Z̃ → Z is a proper surjective morphism over S, p and q are proper birational over S
with µ!p!OX

∼= µ!q!OY , and where B′ := B ×Y Z̃. Let s : Rp∗Rµ∗Rf
′
∗OB′ → OX be a section of

ηp◦µ◦f ′ : OX → Rp∗Rµ∗Rf
′
∗OB′ and let s′ : Rq∗Rµ∗Rf

′
∗OB′ → OY be the image of s under the

isomorphism

HomDCoh(OX)(Rp∗Rµ∗Rf
′
∗OB′ ,OX) = HomDCoh(OZ̃)(Rf

′
∗OB′ , µ!p!OX)

∼= HomDCoh(OZ̃)(Rf
′
∗OB′ , µ!q!OY ) = HomDCoh(OY )(Rq∗Rµ∗Rf

′
∗OB′ ,OY ).

Choose dense open subsets U ⊆ X and V ⊆ Y such that p−1(U) = q−1(V ) and such that p and q
restrict to isomorphisms over U and V , respectively. Then the composition

(11.16) OY → Rq∗Rµ∗Rf
′
∗OB′

s′−→ OY

restricted to V is isomorphic, via the isomorphism p|U ◦ q|−1
V : V → U , to

(11.17) OX |U → Rp∗Rµ∗Rf
′
∗OB′ |U

s−→ OX |U .

By choice of s, the composition in (11.17) is equal to the identity ; hence, since Y is assumed to be
integral, the composition in (11.16) sends the constant section 1Y ∈ OY (Y ) to 1Y ∈ OY (Y ). This
shows that OY → Rq∗Rµ∗Rf

′
∗OB′ = Rf∗Rq

′
∗OB′ splits, and hence, that OY → Rf∗OB splits. □

Combined with Proposition 11.12, we obtain a partial answer to the question, whether the
splinter property for smooth projective schemes over a field is stable under derived equivalence :

Corollary 11.18 (Theorem (D)). Let X and Y be normal Gorenstein projective varieties over a
field of positive characteristic. Assume that −KX is big. If X and Y are D-equivalent, then X is a
splinter if and only if Y is a splinter.

Proof. Recall from Bhatt [Bha12, Thm. 1.4] that a Noetherian scheme of positive characteristic is
a splinter if and only if it is a derived splinter. By Proposition 11.12, X and Y are O-equivalent,
thus the statement follows from Theorem 11.15. □

Remark 11.19. According to Conjecture 3.12, the assumption that −KX is big in Corollary 11.18
is conjecturally superfluous.

11.5. Invariance of global F -regularity under O-equivalence and D-equivalence.

Theorem 11.20 (Theorem (G), Global F -regularity is stable under O-equivalence). Let X and Y
be quasi-projective varieties over an F -finite field k of positive characteristic. If X and Y are
O-equivalent, then X is normal globally F -regular if and only if Y is normal globally F -regular.
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Proof. Let p : Z → X, q : Z → Y and µ : Z̃ → Z be as in Definition 11.6, and set p′ := p ◦ µ and
q′ := q ◦ µ. Assume that X is normal globally F -regular. By Proposition 3.10, X is a splinter. By
[Bha12, Thm. 1.4], X is a derived splinter ; in particular the map OX → Rp∗OZ splits. Moreover, by
Theorem 11.15, Y is also a derived splinter and hence is normal. Fix nonempty regular affine open
subsets U ⊆ X and V ⊆ Y such that p−1(U) = q−1(V ) and such that p|U and q|V are isomorphisms.
By [Sta23, Tag 0BCU], D := X \ U and E := Y \ V are divisors. Since Y is quasi-projective, any
Weil divisor on Y is dominated by a Cartier divisor and we may thus further assume that E is
Cartier. By Theorem 6.1 it suffices to show that there exists e > 0 such that OY → F e

∗OY (E)
splits. Let D′ ≥ D be a Cartier divisor on X. Since q∗E =

∑
i aiEi for some ai ∈ Z>0 with Ei the

irreducible components of Supp(q∗E) ⊆ Supp(p∗D′), there exists n ∈ Z>0 such that q∗E ≤ np∗D′.
Let U ′ := X \D′ and set V ′ := q(p−1(U ′)). Then U ′ and V ′ are regular affine open subsets such
that p|U ′ and q|V ′ are isomorphisms.

Since X is globally F -regular, there exists an integer e > 0 such that σD′ : OX → F e
∗OX(nD′)

splits. By the projection formula, the splitting of OX → Rp′∗OZ gives a splitting of idCoh(X) →
Rp′∗Lp

′∗. Thus, we obtain a splitting s of OX → F e
∗OX(nD′)→ Rp′∗F

e
∗OZ(np

′∗D′). Let s′ be the
image of s under the map

HomDCoh(OX)(Rp
′
∗F

e
∗OZ̃(np

′∗D′),OX) = HomDCoh(OZ̃)(F
e
∗OZ̃(np

′∗D′), p′!OX)

→ HomDCoh(OZ̃)(F
e
∗OZ(q

′∗E), q′!OY ) = HomDCoh(OY )(Rq
′
∗F

e
∗OZ̃(q

′∗E),OY )

induced by the inclusion OZ̃(q
′∗E) ↪→ OZ̃(np

′∗D′) and the isomorphism p′!OX
∼= q′!OY . Consider

the composition

ϕ : OY → F e
∗OY (E)→ F e

∗Rq
′
∗Lq

′∗OY (E) = Rq′∗F
e
∗OZ̃(q

′∗E)
s′−→ OY .

Under the isomorphism p|U ′ ◦ q|−1
V ′ , ϕ|V ′ corresponds to the composition

OX |U ′ → F e
∗OX(nD′)→ Rp′∗F

e
∗OZ̃(np

′∗D′)|U ′
s−→ OX |U ′ ,

which is idOU′ . Hence, since Y is integral, ϕ(1Y ) = 1Y for the constant section 1Y ∈ OY (Y ) and
therefore ϕ = idOY

. This shows that OY → F e
∗OY (E) splits. □

Remark 11.21 (The F -split property is stable under O-equivalence). Assume that X and Y are
normal quasi-projective varieties over an F -finite field k. If X and Y are O-equivalent, then X is
F -split if and only if Y is F -split. This follows indeed by considering, in the proof of Theorem 11.20,
dense opens U ′ = U ⊆ X and V ′ = V ⊆ Y such that p−1(U) = q−1(V ) and such that p|U and q|V
are isomorphisms, and by setting D = 0 and E = 0.

Corollary 11.22 (Theorem (E), Global F -regularity is stable under D-equivalence). Let X and Y
be normal Gorenstein projective varieties over an F -finite field of positive characteristic. If X and
Y are D-equivalent, then X is globally F -regular if and only if Y is globally F -regular.

Proof. Since normal globally F -regular projective varieties have big anticanonical class, this follows
from Proposition 11.12 combined with Theorem 11.20. □

Remark 11.23 (The F -split property and D-equivalence). As asked by Zsolt Patakfalvi, we are
unaware whether the F -split property is stable under D-equivalence. As a partial result, we mention
that under the assumptions of Corollary 11.22, if X and Y are D-equivalent and if −KX is big,
then X is F -split if and only if Y is F -split. For this, one argues as in the proof of Corollary 11.18
by using Remark 11.21.

Moreover, if X and Y are D-equivalent abelian varieties (resp. K3 surfaces, resp. strict Calabi–
Yau threefolds), then X is F -split if and only if Y is F -split. This is classical in the case of abelian
varieties and K3 surfaces, and is contained in [War14] in the case of strict Calabi–Yau threefolds
with the additional assumption that these have vanishing first Betti number. Let us provide a
proof. Under the assumptions above, we have an isomorphism of F -isocrystals Hi

crys(X) ∼= Hi
crys(Y )

for i = 1 (resp. i = 2, resp. i = 3). For abelian varieties, this follows for instance from the more
general fact that two D-equivalent smooth projective varieties have isogenous Albanese varieties
[Hon18, Thm. B]. For K3 surfaces and strict Calabi–Yau threefolds, this follows from the general

https://stacks.math.columbia.edu/tag/0BCU
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fact that the Mukai vector of the Fourier–Mukai kernel of a D-equivalence induces an isomorphism
of F -isocrystals between the even-degree cohomologies and between the odd-degree cohomologies
(see e.g. [Huy06, Prop. 5.33]) together with [Hon18, Thm. B] in the case of strict Calabi–Yau
threefolds. In particular, if X and Y are D-equivalent abelian varieties (resp. K3 surfaces, resp.
strict Calabi–Yau threefolds), then X and Y have the same height. One concludes with the fact
that such varieties have height 1 if and only if they are F -split ; this is classical in the case of
abelian varieties and is [GK03, Thm. 2.1] in the case of strict Calabi–Yau varieties.
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[CR15] Andre Chatzistamatiou and Kay Rülling. “Vanishing of the higher direct images of the
structure sheaf”. Compos. Math. 151.11 (2015), pp. 2131–2144.

[CR22] Javier A. Carvajal-Rojas. “Finite torsors over strongly F -regular singularities”. Épijournal
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