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Summary

This thesis is concerned with exceptional collections on smooth projective surfaces.
Any rational surface over an algebraically closed field admits a full exceptional collection.
We extend certain classification results regarding exceptional collections, previously known
for del Pezzo surfaces, to the blow-up of the projective plane in 9 very general points. More
generally, we obtain a classification result for numerically exceptional collections of maximal
length on smooth projective surfaces S with χ(OS) = 1 and K2

X + rk(Knum
0 (X)) = 12.

In contrast to the case of 9 points, on the blow-up in 10 general points we construct an
exceptional collection of maximal length which is not full. As a consequence, the orthogonal
complement of this collection is a universal phantom category. This disproves a conjecture
of Kuznetsov and a conjecture of Orlov.
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Introduction

A theorem of Gabriel states that two algebraic varieties X and Y are isomorphic
if and only if their categories of coherent sheaves Coh(X) and Coh(Y ) are equivalent
[Gab62, Ch. VI, Thm. 1]. Replacing coherent sheaves with bounded complexes of coherent
sheaves and localizing at the class of quasi-isomorphisms, one obtains the derived category
Db(X) := Db(Coh(X)). For algebraic varieties, the derived category yields a coarser
invariant than the abelian category of coherent sheaves itself. For example, by the work
of Mukai [Muk81, Thm. 2.2], the Poincaré bundle of an abelian variety A induces a

derived equivalence to the dual abelian variety Db(A) ∼= Db(Â). On the other hand,
by Bondal–Orlov [BO01, Thm. 2.5], Db(X) reflects the isomorphism class of X if X is
smooth projective with ample or anti-ample canonical class KX . By definition, Db(X)
contains the coherent cohomology of sheaves on X and suitably keeps track of relations
among different complexes of sheaves. Moreover, if X is a smooth projective variety over
the complex numbers C, then Db(X) captures the ungraded singular cohomology with
rational coefficients H∗(X,Q), see, e.g., [Huy06, Prop. 5.33]. Even finer, Orlov conjectured
[Orl05, Conj. 1] that derived equivalent smooth projective varieties have isomorphic Chow
motives with rational coefficient. In particular, evidence for this conjecture is provided
by derived equivalences of irreducible holomorphic symplectic varieties: Taelman showed
that if X and Y are derived equivalent irreducible holomorphic symplectic varieties, then
H i(X,Q) ∼= H i(Y,Q) as Q-Hodge structures [Tae23, Thm. D]. These observations, as well
as the triangulated structure Db(X) is endowed with, turn the derived category into a
reasonable as well as interesting invariant of algebraic varieties.

If X is a smooth projective variety over an algebraically closed field k, then dealing
with the whole category Db(X) as an invariant directly can be an ambitious goal. For
that reason the notion of a so-called semiorthogonal decomposition proved to be a useful
way of decomposing Db(X) into smaller “pieces”. The smallest possible piece in such
a decomposition is a subcategory generated by an exceptional object, that is an object
E ∈ Db(X) such that HomDb(X)(E,E) = k and HomDb(X)(E,E[l]) = 0 for all l ∈ Z \ {0}.
If E is an exceptional object, then ⟨E⟩, the full triangulated subcategory generated by E,
is equivalent to the derived category of a single point, i.e., ⟨E⟩ ∼= Db(Spec k).

The “simplest” semiorthogonal decomposition of Db(X), which one could hope for,
consists only of exceptional objects and is called a full exceptional collection. That is, an
ordered tuple (E1, . . . , En) ⊆ Db(X) of exceptional objects such that HomDb(X)(Ei, Ej [l]) =

0 for all j < i, l ∈ Z and such that ⟨E1, . . . , En⟩ = Db(X), i.e., Db(X) is the smallest full
triangulated subcategory which is closed under direct summands and contains E1, . . . , En.
A full exceptional collection does not necessarily exist, but if it does, then it implies strong
constraints on the geometry of the underlying variety. Most importantly, if Db(X) admits
a full exceptional collection (E1, . . . , En), then the Grothendieck group is freely generated
by the images of the Ei, i.e.,

K0(X) = Z[E1]⊕ · · · ⊕ Z[En].
1



2 INTRODUCTION

As a consequence, the Chow motive with rational coefficients of such a variety is a direct
sum of Lefschetz motives [MT15, Thm. 1.1], [Via17, § 2]. For example, if X is defined
over C, this implies that the Hodge numbers hp,q(X) vanish whenever p ̸= q.

Full exceptional collections were constructed for projective spaces [Bei78], Grassmann-
ians and quadrics over C [Kap88], as well as certain other rational homogeneous varieties.
Conjecturally any variety of the the form G/P , where G is a semi-simple algebraic group
over C and P ⊆ G a parabolic subgroup, admits a full exceptional collection [KP16,
Conj. 1.1]. A folklore conjecture, attributed to Orlov, states that a variety with a full
exceptional collection is rational.

This thesis is concerned with derived categories of rational surfaces. Over an alge-
braically closed field k, any rational surface X can be obtained from P2

k or from a Hirzebruch
surface Σd by a sequence of blow-ups in closed points. Hence, by Orlov’s blow-up and
projective bundle formulae for semiorthogonal decompositions [Orl92], any such X admits
a full exceptional collection.

In Chapter 1 we investigate whether one can classify full exceptional collections on a
given surface. One method to construct new collections from known ones are so-called
mutations. A conjecture of Bondal–Polishchuk [BP93, Conj. 2.2] states that in a triangulated
category any two full exceptional collections lie in the same orbit of the action by mutations
and shifts. In this generality, the conjecture is known to be false [CHS23]. Nonetheless,
the conjecture holds for Db(X) if X is a del Pezzo surface [KO94]. The first result,
Theorem 1.1.2, verifies the conjecture on the numerical level for triangulated categories
Db(X) where X is a smooth projective surface with χ(OX) = 1 andK2

X+rk(Knum
0 (X)) = 12.

More precisely, denoting χ(−,−) the Euler pairing, we consider mutations of exceptional
bases in Knum

0 (X) := K0(X)/ kerχ, that is a basis e• = (e1, . . . , en) of K
num
0 (X) such that

χ(ei, ei) = 1 for all i and χ(ei, ej) = 0 for all j < i.

Theorem (Theorem 1.1.2). Let X be a smooth projective surface over a field k with
χ(OX) = 1 and K2

X + rk(Knum
0 (X)) = 12. Let e• and f• be exceptional bases of Knum

0 (X).

(i) There exists a Z-linear automorphism ϕ : Knum
0 (X) → Knum

0 (X) preserving the
Euler pairing and the rank of elements such that ϕ(e•) can be transformed to f•
by a sequence of mutations and sign changes.

(ii) If in addition rkKnum
0 (X) ≤ 12, then e• and f• are related by a sequence of

mutations and sign changes.

Recall that, if k is algebraically closed, a del Pezzo surface is either isomorphic to
P1
k × P1

k, or to a blow-up of P2
k in up to 8 points with no 3 of them on a line, no 6 of them

on a conic, and no 8 of them on a cubic having a node at one of them. In particular,
a del Pezzo surface X satisfies χ(OX) = 1 and rkKnum

0 (X) ≤ 11. The second result,
Theorem 1.1.3, concerns the particular case of P2

C blown up in 9 very general points. In
this case rkKnum

0 (X) = 12.

Theorem (Theorem 1.1.3). Let X be the blow-up of P2
C in 9 very general points. Then

(i) any numerically exceptional collection of maximal length consisting of line bundles
is a full exceptional collection, and

(ii) any two such collections are related by mutations and shifts.

The above Theorem 1.1.3 (i) extends a result of Elagin–Lunts stating that on a del Pezzo
surface any numerically exceptional collection of maximal length consisting of line bundles
is a full exceptional collection [EL16].

The results obtained in Chapter 1 build on a detailed analysis of orthogonal transfor-
mations of the Picard groups. Namely, for X the blow-up of P2

k in n points, we argue in
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Lemmata 1.4.6 and 1.5.1 that

O(Pic(X))KX
= {f ∈ O(Pic(X)) | f(KX) = KX} =

{
WX if n ≤ 9,

WX × ⟨ι⟩ if n = 10,

where O(Pic(X)) denotes the Z-linear automorphisms of Pic(X) preserving the intersection
form, WX ⊆ O(Pic(X))KX

is the Weyl group associated to a certain root system in Pic(X),
and ι is an involution of Pic(X) fixing the canonical class. A transformation in WX can be
expressed as a composition of simple reflections which correspond to standard quadratic
transformations in the Cremona group of P2

C. In contrast, the involution ι has no obvious
geometric origin but still gives rise to a numerically exceptional collection. Intrigued by
this observation, we study in Chapter 2 the numerically exceptional collection obtained by
applying ι to a full exceptional collection consisting of line bundles. We show:

Theorem (Theorem 2.1.1). Let X be the blow-up of P2
C in 10 general points p1, . . . , p10 ∈ P2

C.
Denote by H the divisor class obtained by pulling back the class of a hyperplane in P2

C and
denote by Ei the class of the exceptional divisor over the point pi, 1 ≤ i ≤ 10. Then

⟨OX ,OX(D1), . . . ,OX(D10),OX(F ),OX(2F )⟩ ⊆ Db(X),

where Di := ι(Ei) = −6H + 2
10∑
j=1

Ej − Ei and F := ι(H) = −19H + 6
10∑
i=1

Ei,

is an exceptional collection of maximal length which is not full.

The above Theorem 2.1.1 disproves the following conjecture of Kuznetsov:

Conjecture ([Kuz14, Conj. 1.10]). Let T = ⟨E1, . . . , En⟩ be a triangulated category
generated by an exceptional collection. Then any exceptional collection of length n in T is
full.

A nontrivial admissible subcategory A ⊆ Db(X) is a phantom if the Grothendieck group
K0(A) vanishes. Originally, there was hope that phantoms do not exist [Kuz09, Conj. 9.1].
Shortly after, the first examples of phantoms were constructed by Gorchinskiy–Orlov
[GO13] and Böhning–Graf von Bothmer–Katzarkov–Sosna [BGKP15]. These examples are
of two different types: The first example of Gorchinskiy–Orlov is constructed by taking
the product of two surfaces which were known to admit quasi-phantoms, i.e., nontrivial
admissible subcategories A such that K0(A) is finitely generated and torsion. If one chooses
two quasi-phantoms on suitable varieties such that the order of the torsion groups is
coprime, then the product of the varieties carries a phantom category. The second example
of Böhning–Graf von Bothmer–Katzarkov–Sosna considers a generic determinantal Barlow
surface. Such a surface admits an exceptional collection of maximal length which is not
full. Therefore, the left- or right-orthogonal complement of such a collection is a phantom
category.

In contrast, it is known that del Pezzo surfaces do not admit phantom categories [Pir23,
Thm. 6.35]. As in the case of the Barlow surface, it is a consequence of Theorem 2.1.1 that
the right- or left-orthogonal complement of ⟨OX ,OX(D1), . . . ,OX(D10),OX(F ),OX(2F )⟩ is
a phantom category and therefore provides an example of a phantom on a rational surface.
As outlined in Section 2.1, the phantom category obtained this way can be identified with
the homotopy category of the dg-category of perfect dg-modules over a smooth finite-
dimensional dg-algebra. For that reason, Theorem 2.1.1 disproves the following conjecture
of Orlov as well:
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Conjecture ([Orl20, Conj. 3.7]). There are no phantoms of the form Perf –R, where R is
a smooth finite-dimensional dg-algebra and Perf –R is the dg-category of perfect dg-modules
over R.

Recent work of Borisov–Kemboi shows that the existence of the phantom in Theo-
rem 2.1.1 depends on the position of the blown up points. It follows from [BK24, Thm. 1.1]
that if X is the blow-up of P2

C in finitely many points in very general position on a smooth

cubic curve, then Db(X) contains no phantom. In order to obtain a deeper understanding
why the phantom exists on blow-ups of 10 general points, it could be interesting to find
a geometric interpretation of the symmetry ι used in Theorem 2.1.1. Note that ι as an
involution of the Picard lattice exists regardless of the position of points. For that reason,
it could be reasonable to expect that a geometric interpretation again incorporates the
position of points.

Organization. Chapter 1 is based on the paper [Kra24b] which has been published in the
Mathematische Zeitschrift Volume 307, No. 4. Chapter 2 is based on the paper [Kra24a]
which has been published in Inventiones mathematicae Volume 235, Issue 3.



CHAPTER 1

Mutations of Numerically Exceptional Collections on
Surfaces

Based on [Kra24b]

Summary. A conjecture of Bondal–Polishchuk states that, in particular for the bounded
derived category of coherent sheaves on a smooth projective variety, the action of the
braid group on full exceptional collections is transitive up to shifts. We show that the
braid group acts transitively on the set of maximal numerically exceptional collections
on rational surfaces up to isometries of the Picard lattice and twists with line bundles.
Considering the blow-up of the projective plane in up to 9 very general points, these results
lift to the derived category. More precisely, we prove that, under these assumptions, a
maximal numerically exceptional collection consisting of line bundles is a full exceptional
collection and any two of them are related by a sequence of mutations and shifts. The
former extends a result of Elagin–Lunts and the latter a result of Kuleshov–Orlov, both
concerning del Pezzo surfaces.

1.1. Introduction

Any smooth projective rational surface over an algebraically closed field admits a full
exceptional collection by Orlov’s projective bundle and blow-up formulae [Orl92], however
a classification of exceptional collections on a given surface is widely open. To construct
new exceptional collections from old ones, a key tool are so-called mutations of exceptional
pairs, see Section 1.2.3; these give rise to an action of the braid group in n strands on
the set of exceptional collections of length n on such a surface. Bondal and Polishchuk
conjectured in more generality:

Conjecture 1.1.1 ([BP93, Conj. 2.2]). Let T be a triangulated category which admits a
full exceptional collection T = ⟨E1, . . . , En⟩. Then any other full exceptional collection of T
can be constructed from ⟨E1, . . . , En⟩ by a sequence of mutations and shifts.

Recently, this conjecture was proven to be false [CHS23] and a counterexample is given
by a Fukaya category of a certain smooth two-dimensional real manifold. To our knowledge,
the conjecture still remains open for triangulated categories T = Db(Coh(X)), where X is
a smooth projective variety.

This chapter is concerned with the question of classifying (numerically) exceptional
collections on a given algebraic surface. Exceptional collections on rational surfaces have
been previously studied in [HP11] and [Per18] via considering their associated toric surfaces.
A classification of surfaces admitting a numerically exceptional collection of maximal length
was carried out in [Via17]. Conjecture 1.1.1 was first verified in the cases T = Db(X),
where X is either P2 or P1 × P1. The case where X is a del Pezzo surfaces is treated in
[KO94]. In [Kul97], similar results for surfaces with basepoint-free anticanonical class were
obtained. A full discussion of exceptional collections on the Hirzebruch surface Σ2 was
worked out in [IOU21] and Conjecture 1.1.1 was settled for Db(Σ2).

5
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In the first part of the chapter, we consider the images of exceptional collections in
Knum
0 (X) instead of the objects in the derived category itself. These so-called numerically

exceptional collections on a surface X with χ(OX) = 1 and K2
X + rk(Knum

0 (X)) = 12
have been previously investigated by Perling and Vial [Per18; Via17]. Their lattice-
theoretic arguments have been reworked by Kuznetsov in the abstract setting of surface-like
pseudolattices, introduced in [Kuz17]. Independently, a similar notion of a surface-type
Serre lattice was developed in [dTVdB16]. In Section 1.2 we unify both formalisms in order
to prove in Section 1.3 part (i) of the following

Theorem 1.1.2 (Theorem 1.3.1, Corollary 1.4.23). Let X be a smooth projective surface
over a field k with χ(OX) = 1 and K2

X + rk(Knum
0 (X)) = 12. Let e• and f• be exceptional

bases of Knum
0 (X).

(i) There exists a Z-linear automorphism ϕ : Knum
0 (X) → Knum

0 (X) preserving the
Euler pairing and the rank of elements such that ϕ(e•) can be transformed to f•
by a sequence of mutations and sign changes.

(ii) If in addition rkKnum
0 (X) ≤ 12, then e• and f• are related by a sequence of

mutations and sign changes.

By definition, an exceptional basis of Knum
0 (X) is the class of a numerically exceptional

collection of maximal length in Knum
0 (X), see Definition 1.2.2. Thus, we can reformulate

Theorem 1.1.2 (i) as: Given two numerically exceptional collections (E1, . . . , En) and
(F1, . . . , Fn) of maximal length on a surface X with χ(OX) = 1 we can find a sequence of
mutations and shifts σ such that χ(σ(Ei), σ(Ej)) = χ(Fi, Fj) and rkσ(Ei) = rkFi holds
for all 1 ≤ i, j ≤ n.

Allowing automorphisms of Knum
0 (X) preserving χ in addition to mutations and shifts

was classically considered in the case of X = P2, where full exceptional collections can
be interpreted as solutions of the Markov equation, see, e.g., [GK04, § 7]. For lattices of
higher rank this action was considered for instance in [Gor94].

To prove Theorem 1.1.2 (i) we can restrict to the case of X being either P1 × P1

or a blow-up of P2 in a finite number of points by using Vial’s classification recalled in
Theorem 1.2.13. Moreover, the group Aut(Knum

0 (X)) = Aut(Knum
0 (X), χ, rk) of isometries ϕ

preserving the Euler pairing χ and the rank of elements fits into a short exact sequence

1 → NS(X) → Aut(Knum
0 (X)) → O(NS(X))KX

→ 1,

where O(NS(X))KX
= {f ∈ O(NS(X)) | f(KX) = KX} is the stabilizer of the canonical

class in the orthogonal group of O(NS(X)); see Lemma 1.2.11.
In Section 1.4 we address the question how to lift Theorem 1.1.2 (i) to Db(X) and

prove Theorem 1.1.2 (ii). The following two conditions are sufficient to deduce from
Theorem 1.1.2 (i) that mutations and shifts act transitively on the set of full exceptional
collections on X:

(a) The action of an isometry ϕ : Knum
0 (X) → Knum

0 (X) as in Theorem 1.1.2 (i) can
be realized as a sequence of mutations and shifts.

(b) Two full exceptional collections sharing the same class in Knum
0 (X) can be

transformed into each other by a sequence of mutations and shifts.

If X is a del Pezzo surface, the arguments of [KO94] prove (b), see Lemma 1.4.11, and for
the Hirzebruch surface Σ2 the condition (b) is verified in [IOU21, § 6].

The main theorem of Elagin–Lunts in [EL16] states that any numerically exceptional
collection consisting of line bundles on a del Pezzo surface is a full exceptional collection
obtained from Orlov’s blow-up formula applied to a minimal model. We extend this result
to the blow-up X of 9 very general points in P2

C.
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Theorem 1.1.3 (Corollary 1.4.10, Theorem 1.4.18). Let X be the blow-up of P2
C in 9 very

general points. Then

(i) any numerically exceptional collection of maximal length consisting of line bundles
is a full exceptional collection, and

(ii) any two such collections are related by mutations and shifts.

The position of the 9 points is discussed in Remark 1.4.4. Further, our results in
Chapter 2 show that the statements of Theorem 1.1.3 do not hold for blow-ups of 10 or
more points.

The proof of Theorem 1.1.3 (ii) is closely linked to the proof of Theorem 1.1.2 (ii). The
key ingredient is the identification of the aforementioned group O(Pic(X))KX

with the
Weyl group WX of a root system embedded in Pic(X), see Lemma 1.4.6. Although this
lattice-theoretic equality holds for the blow-up of up to 9 points regardless of their position,
our argument relies on a result of Nagata [Nag60] which uses the actual geometry of X.
The equality O(Pic(X))KX

=WX then enables us to verify condition (a) for the blow-up
in up to 9 very general points and thus we obtain Theorem 1.1.3 (ii) and Theorem 1.1.2 (ii).

In addition, our techniques provide a new proof of the fact that any two full exceptional
collections on a del Pezzo surface are related by mutations and shifts; see Corollary 1.4.22.
This result was proven in the first place by Kuleshov–Orlov in [KO94, Thm. 7.7].

Finally Section 1.5 discusses the lattice-theoretic behavior of the blow-up X of P2 in 10
points. In this case the Weyl group WX ⊆ O(Pic(X))KX

has index two and Pic(X) admits
an additional involution ι which fixes the canonical class KX ; see Lemma 1.5.1. While
the action of WX on exceptional collections of line bundles can be modeled by Cremona
transformations of P2, the action of ι gives rise to an extraordinary numerically exceptional
collection of line bundles. In Chapter 2 we show that the numerically exceptional collection
obtained from ι is an exceptional collection of maximal length which is not full, provided the
points are in general position. As a consequence, Db(X) contains a phantom subcategory
and the braid group action on exceptional collections of maximal length is not transitive.
If one could verify condition (b) for exceptional collections of maximal length on X, the
results of Chapter 2 would imply that the numerical bound in Theorem 1.1.2 (ii) is optimal,
see Remark 1.5.4.

Conventions. In this chapter the term surface always refers to a smooth projective variety
of dimension 2 over a field. The results in Section 1.3 are independent of the chosen base
field, in Section 1.4 we exclusively work over the complex numbers. For a surface X, we
write NS(X) for the Picard group modulo numerical equivalence. This coincides with the
usual definition of the Néron–Severi group up to torsion if the base field is algebraically
closed.

The term “n general points in P2
C” means that there exists a nonempty Zariski open

subset U ⊆ (P2
C)
n such that for any (p1, . . . , pn) ∈ U [...] holds. The term “n very

general points in P2
C” means that there exist countably many nonempty Zariski open subset

Ui ⊆ (P2
C)
n such that for any (p1, . . . , pn) ∈

⋂
i Ui [...] holds.

Acknowledgements. We thank Pieter Belmans and Charles Vial for reading an earlier draft
of [Kra24b] and we thank the anonymous referee of [Kra24b] for carefully reading our
manuscript. Further, we thank Alexander Kuznetsov for his detailed comments on this
chapter.

1.2. Numerically Exceptional Collections and Pseudolattices

We recall the necessary terminology of surface-like pseudolattices as it is presented
in [Kuz17]. Independently, the notion of a surface-type Serre lattice was introduced
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in [dTVdB16]. After comparing both notions, we discuss the blow-up operation for
pseudolattices in detail. Numerical blow-ups are explicitly mentioned in [dTVdB16] but
were already used in [HP11; Via17; Kuz17] in a slightly different manner.

1.2.1. Exceptional collections. Let X be a smooth projective variety over a field k
and let Db(X) := Db(Coh(X)) be the bounded derived category of coherent sheaves on X.
An object E ∈ Db(X) is exceptional if Hom(Ei, Ei) = k and Hom(Ei, Ei[l]) = 0 for all l ̸= 0.
A full exceptional collection in Db(X) is a sequence of exceptional objects (E1, . . . , En)
such that E1, . . . , En generate Db(X) as a triangulated category and Hom(Ei, Ej [l]) = 0
for all l ∈ Z whenever i > j. When considering only their images in the Grothendieck
group K0(X) := K0(D

b(X)) homomorphism spaces have to be exchanged with alternating
sums over their dimensions. For this, let

χ(E,F ) :=
∑
j∈Z

(−1)j dimk Hom(E,F [j])

be the Euler pairing. It gives rise to a bilinear form on K0(X) and an object E ∈ Db(X) is
called numerically exceptional if χ(E,E) = 1.

Definition 1.2.1. A numerically exceptional collection in Db(X) is a sequence of nu-
merically exceptional objects (E1, . . . , En) such that χ(Ei, Ej) = 0 whenever i > j. The
sequence is said to be of maximal length if [E1], . . . , [En] ∈ K0(X) generate Knum

0 (X) as a
Z-module or equivalently if n = rkKnum

0 (X).

Here Knum
0 (X) := K0(X)/ kerχ denotes the numerical Grothendieck group. Note that

the left and right kernels of χ coincide thanks to Serre duality and note that Knum
0 (X)

is torsion-free. Clearly χ defines a non-degenerate bilinear form on Knum
0 (X). Therefore

studying numerically exceptional collections can be reduced to studying non-degenerate
Z-valued bilinear forms, which will be formalized in the notion of a pseudolattice.

1.2.2. Surface-like pseudolattices. We begin with recalling the notion of a pseu-
dolattice in the sense of Kuznetsov.

Definition 1.2.2 ([Kuz17, Def. 2.1]). A pseudolattice is a finitely generated free abelian
group G together with a non-degenerate bilinear form χ : G ⊗Z G → Z. An isometry
ϕ : (G,χG) → (H,χH) between pseudolattices is a Z-linear isomorphism which satisfies
χG(v, w) = χH(ϕ(v), ϕ(w)) for all v, w ∈ G.

• The pseudolattice (G,χ) is unimodular if χ induces an isomorphism G →
HomZ(G,Z).

• Let e• = (e1, . . . , en) be a basis of G, then (χ(ei, ej))i,j is called the Gram matrix
with respect to e•.

• An element e ∈ G is called exceptional if χ(e, e) = 1.
• An ordered basis e• is called exceptional basis if the corresponding Gram matrix
is upper unitriangular, i.e., χ(ei, ej) = 0 whenever i > j and χ(ei, ei) = 1 for
all i.

• A Serre operator is an isometry S : G → G satisfying χ(v, w) = χ(w, S(v)) for
all v, w ∈ G.

Note that the lattice G is unimodular if and only if the Gram matrix has determinant ±1.
The Serre operator is unique, provided it exists, and if G is unimodular, it is given by
M−1MT , where M = (χ(ei, ej))1≤i,j≤n is the Gram matrix of χ with respect to a chosen
basis (e1, . . . , en). In case we need to pass to rational coefficients, we use the notation
GQ := G⊗Z Q for a pseudolattice G (or more generally for any abelian group).
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Definition 1.2.3 ([Kuz17, Def. 3.1]). A pseudolattice (G,χ) is surface-like if there exists
a primitive element p ∈ G satisfying

(i) χ(p, p) = 0,
(ii) χ(p, v) = χ(v, p) for all v ∈ G,
(iii) χ is symmetric on p⊥ := {v ∈ G | χ(p, v) = 0}.

Such an element p is called a point-like element.

The terminology is justified by the following geometric Example 1.2.5. First, recall
that for a smooth projective surface S the Chern character induces an isomorphism

(1.2.4) ch: Knum
0 (S)Q

∼−→ Q⊕NS(S)Q ⊕Q,
see, e.g., [EL16, Lem. 2.1]. In particular, Knum

0 (S) has finite rank.

Example 1.2.5 (Pseudolattices from surfaces). Let S be a smooth projective surface
over a field k which admits a k-valued point i : {x} ↪→ S. For example if S is rational,
the existence of a k-valued point is guaranteed by the Lang–Nishimura Theorem. Let
G := Knum

0 (S) be the numerical Grothendieck group together with its Euler pairing. Then
the class of the skyscraper sheaf i∗k(x) = Ox is a point-like element in G. An exceptional
basis of G is the same as the image of a numerically exceptional collection of maximal
length on S in Knum

0 (S).

Remark 1.2.6. More generally, any 0-cycle of degree 1 in CH0(S) provides a point-like
element by realizing it as a Chern character of a complex of skyscraper sheaves. However
all the surfaces we consider are rational, for that reason we will only consider point-like
elements as in Example 1.2.5.

From now on any surface-like pseudolattices Knum
0 (S), where S is a surface over k, is

implicitly assumed to be endowed with the Euler pairing and a point-like element given by
the class of a skyscraper sheaf of a k-valued point. Recall for later use that if E,F ∈ Db(S)
are objects with e := rkE and f := rkF , then Riemann–Roch, see, e.g., [Per18, § 3.2],
yields

χ(E,F ) = efχ(OX) +
1

2

(
f c1(E)2 + e c1(F )

2 − 2 c1(E) c1(F )
)

(1.2.7)

− 1

2
KX(e c1(F )− f c1(E))− (f c2(E) + e c2(F )).

Given a surface-like pseudolattice G with point-like element p, we define the rank
function with respect to p to be r(−) := χ(p,−) = χ(−, p). Then p⊥ = ⊥p = ker(r) and we
obtain the analogue of the decomposition in (1.2.4).

Lemma 1.2.8 ([Kuz17, Lem. 3.10, Lem. 3.11]). If G is a surface-like pseudolattice and p
a point-like element, there is a complex

Z p−→ G
r−→ Z

with injective p and, if G is unimodular, surjective r. The middle cohomology of the above
complex NS(G) := p⊥/p is a finitely generated free abelian group of rank rk(G)− 2.

On NS(G) the pairing −χ induces a well-defined non-degenerate symmetric bilinear
form q, called the intersection form, which also will be denoted by the usual product − · −.

Lemma 1.2.9 ([Kuz17, Lem. 3.12]). Let G be a surface-like pseudolattice with point-like

element p and let λ :
∧2G→ p⊥ be the alternating map sending v ∧ w 7→ r(v)w − r(w)v.

Then there is a unique element KG ∈ NS(G)Q, called canonical class, satisfying

(1.2.10) −q(KG, λ(v, w)) = χ(v, w)− χ(w, v)
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for all v, w ∈ G. If G is unimodular, KG is integral, i.e., KG ∈ NS(G).

The pair (NS(G), q) is called the Néron–Severi lattice and NS(G) the Néron–Severi
group. One can check that for a surface S and pseudolattice G = Knum

0 (S) as in Exam-
ple 1.2.5 all these definitions agree with the usual ones. For example, via Riemann–Roch
(1.2.7) one computes χ(Ox,F) = rkF for any coherent sheaf F on S and x ∈ S a k-valued
point.

The following Lemma 1.2.11, which could not be found in the literature, will be
important in the proof of Theorem 1.1.3. For that reason, we provide a proof here.

Lemma 1.2.11 (Self-isometries arise from orthogonal transformations). Let G be a surface-
like pseudolattice of rkG ≥ 3 and let Aut(G) be the group of self-isometries ϕ : G → G
with ϕ(p) = p. The map Ψ: Aut(G) → O(NS(G)) obtained by sending ϕ ∈ Aut(G) to the
induced orthogonal transformation of NS(G) defines a group homomorphism.

Then, if G is unimodular, the image of Ψ equals the stabilizer of the canonical class
O(NS(G))KG

= {f ∈ O(NS(G)) | f(KG) = KG}. Moreover, if G = Knum
0 (X) for some

surface X with χ(OX) = 1 as in Example 1.2.5, the kernel of Ψ can be identified with the
subgroup of automorphisms given by twists with line bundles. In other words we obtain a
short exact sequence

1 → NS(X) → Aut(Knum
0 (X)) → O(NS(X))KX

→ 1,

where Aut(Knum
0 (X)) are the automorphisms preserving the point-like element [Ox].

Proof. Since r(−) = χ(p,−), any ϕ : G → G which preserves the point-like element p
preserves the rank of elements. Hence it induces an orthogonal transformation of NS(G)
which fixes the canonical class KG. If G is unimodular, we can choose a rank 1 vector
v0 ∈ G. Since χ(v0, v0) = 1, we have a splitting

G = ⊥v0 ⊕ Zv0 where ⊥v0 := {v ∈ G | χ(v, v0) = 0}.

The inclusion ⊥v0 ∩ p⊥ ⊆ p⊥ induces an isomorphism ⊥v0 ∩ p⊥
∼−→ NS(G) since any

D ∈ NS(G) = p⊥/p has a unique representative d ∈ p⊥ such that χ(d, v0) = 0. Any
ϕ̄ ∈ O(NS(G)) can be lifted to an automorphism of the sublattice

NS(G)⊕ Zp = ⊥v0 ∩ p⊥ ⊕ Zp = p⊥ ⊆ G

fixing p. If in addition ϕ̄ fixes KG, then we can lift ϕ̄ to an automorphism ϕ of G fixing v0
since

χ(v0, p) = χ(p, v0) = 1,

χ(d, v0) = 0, and χ(v0, d) = −q(KG, d) for any d ∈ ⊥v0 ∩ p⊥ = NS(G).

Now assume G = Knum
0 (X) for some surface X with χ(OX) = 1 and let ϕ ∈ Aut(G) be

an isometry which is the identity on NS(G). The class ϕ([OX ]) is the class of a numerically
exceptional object E of rank 1. Note that Riemann–Roch (1.2.7) implies that c2(E) = 0.
Since

ch(E) =

(
rkE, c1(E),

1

2
(c1(E)2 − 2 c2(E))

)
,

the condition c2(E) = 0 implies [E] = [OX(c1(E))] in Knum
0 (X). Thus, twisting with

OX(c1(E)) defines an isometry of G which maps [OX ] to [E].
Let F ∈ Db(X) be an object of rank 0. Then ch(F ) = (0, c1(F ), d), some d ∈ Q.

Multiplicativity of the Chern character gives

ch(F (c1(E))) = (0, c1(F ), d) · (1, c1(E), d′) = (0, c1(F ), c1(F ) c1(E) + d),
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for some d′ ∈ Q. We observe that the first Chern class of F is invariant under twisting with
a line bundle and also twisting with a line bundle does not change the point-like element
defined by a skyscraper sheaf. Thus, − ⊗ OX(c1(E)) is an isometry of G which fixes p,
induces the identity on NS(G), and sends [OX ] to [E]. Let v ∈ p⊥, then ϕ(v) = v+ nvp for
some nv ∈ Z. On the other hand

χ([OX ], v) = χ([E], ϕ(v)) = χ([E], v) + nvχ([E], p) = χ([E], v) + nv,

i.e., ϕ(v) = v+χ([OX ]−ϕ([OX ]), v)p. Since ϕ was an arbitrary isometry in the kernel of Ψ,
we must have ϕ(v) = v⊗OX(c1(E)) for every v ∈ p⊥. We conclude that ϕ = −⊗OX(c1(E))
since G = Z[OX ]⊕ p⊥. □

Definition 1.2.12 ([Kuz17, Def. 4.1, Lem. 4.2, Def. 4.3]). A surface-like pseudolattice
G is called geometric if (NS(G), q) has signature (1, rkG− 3), the canonical class KG is
integral and KG is characteristic, i.e., q(D,D) ≡ q(KG, D)(mod 2) for all D ∈ NS(G).
A surface-like pseudolattice G is minimal if it has no exceptional elements of rank zero.
Equivalently NS(G) does not contain any (−1)-class.

It turns out that such geometric pseudolattices can be classified if we restrict to defect
zero pseudolattices. Here the defect of G is the integer

δ(G) := K2
G + rk(G)− 12.

If G is obtained as in Example 1.2.5 from a surface S with χ(OS) = 1 and which admits a
numerically exceptional collection of maximal length consisting of line bundles, one can
show that δ(G) = 0; see Remark 1.2.14 below. If S is a smooth projective surface over
an algebraically closed field of characteristic such that OS is exceptional, then, by [Kuz17,
Lem. 5.5], δ(Knum

0 (X)) = 0.

Theorem 1.2.13 ([Via17, Thm. 3.1], [Kuz17, Thm. 5.12]). Let G be a unimodular geometric
pseudolattice of rank n ≥ 3 and zero defect such that G represents 1 by a rank 1 vector,
i.e., there exists v ∈ G of rank 1 such that χ(v, v) = 1. Then the following holds:

• n = 3 and KG = −3H for some H ∈ NS(G) if and only if G is isometric to
Knum
0 (P2);

• n = 4, NS(G) is even and KG = −2H for some H ∈ NS(G) if and only if G is
isometric to Knum

0 (P1 × P1);
• n ≥ 4, NS(G) is odd and KG is primitive if and only if G is isometric to
Knum
0 (Xn−3).

Here Xn−3 is the blow-up of P2 in n− 3 points. Furthermore, G has an exceptional basis
if and only if one of the three possibilities listed above is satisfied.

Remark 1.2.14. Let S be a smooth projective surface S over a field k with χ(OS) = 1.
Then, by [Via17, Thm. 3.1], S admits a numerically exceptional collection of maximal
length consisting of line bundles if and only if K2

S + rkNS(S) = 10 and (NS(S),KS) falls
in one of the cases described in Theorem 1.2.13.

Let G be a surface-like pseudolattice with Serre operator S. Let v ∈ G, then

χ(p, (S − 1)(v)) = χ(v, p)− χ(p, v) = 0.

Furthermore, [Kuz17, Lem. 3.14] shows that S − 1 maps p⊥ to Zp. Thus, we obtain a
decreasing filtration

F 3G = 0 ⊆ F 2G = Zp ⊆ F 1G = p⊥ ⊆ F 0G = G

such that S − 1 maps F iG to F i+1G. If G is unimodular, the rank map induces an
isomorphism r : G/p⊥ → Z, thus the above filtration defines a so-called codimension
filtration.
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Definition 1.2.15 ([dTVdB16, Def. 5.1.1]). Let G be a pseudolattice with Serre operator
S and let V := GQ. A codimension filtration on V is a filtration

0 = F 3V ⊆ F 2V ⊆ F 1V ⊆ F 0V = V

such that (S − 1)(F iV ) ⊆ F i+1V , dimF 0V/F 1V = dimF 2 = 1 and χ(F 1V, F 2V ) = 0.

Conversely, any codimension filtration gives rise to a point-like element by choosing a
generator of F 2G = F 2V ∩G. This yields a 1:1-correspondence

{codimension filtrations F • on G} ↔ {point-like elements p}/{±1}.
We will refer to both of them, a point-like element and a codimension filtration, as a
surface-like structure on the pseudolattice G. In Example 1.2.5 the codimension filtration
coincides with the topological codimension filtration, as discussed in [Kuz17, Ex. 3.5].

1.2.3. Mutations. Given e ∈ G we define the left mutation Le and its right mutation
Re as

Le(v) := v − χ(e, v)e

Re(v) := v − χ(v, e)e

for all v ∈ G. Note that the left and right mutation define mutually inverse isomorphisms
of the orthogonal complements of e

⊥e e⊥.

Le

Re

Given an exceptional basis e• = (e1, . . . , en) of G we define

Li,i+1(e•) := (e1, . . . , ei−1, Lei(ei+1), ei, ei+2, . . . , en),

Ri,i+1(e•) := (e1, . . . , ei−1, ei+1,Rei+1(ei), ei+2, . . . , en).

The sequences are again exceptional bases and the above operations are mutually inverse.
By construction, these mutations match the known mutations of exceptional collections if
G = Knum

0 (S) as in Example 1.2.5. Indeed, if S is a surface and E ∈ Db(S) an exceptional
object, the left mutation LE and right mutation RE are defined as

LE(F ) := Cone
(
E ⊗ RHom(E,F )

ev−→ F
)

and

RE(F ) := Cone
(
F

ev∨−−→ E ⊗ RHom(F,E)∨
)
[−1]

for any object F ∈ Db(S). Note that by construction the diagram

Db(S) Knum
0 (S)

Db(S) Knum
0 (S)

ME M[E]

commutes, where ME = LE or ME = RE .
Moreover, if Db(S) = ⟨E1, . . . , En⟩ = ⟨E•⟩ is a full exceptional collection, the sequences

Li,i+1(E•) := (E1, . . . , Ei−1, LEi(Ei+1), Ei, Ei+2, . . . , En),

Ri,i+1(E•) := (E1, . . . , Ei−1, Ei+1,REi+1(Ei), Ei+2, . . . , En).

are again full exceptional collections. Already on the level of Db(S) the operations Li,i+1

and Ri,i+1 give rise to an action of the braid group Bn, see, e.g., [BP93, Prop. 2.1]. Together
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with Zn acting by shifts, this yields an action of the semidirect product Zn⋊Bn on the set
of full exceptional collections, where the homomorphism Bn → Aut(Zn) is the composition
of the canonical map Bn → Sn and the action of Sn on Zn by permutations. If two
exceptional bases lie in the same orbit of the Zn ⋊ Bn-action, we say the exceptional
collections are related by mutations up to shifts.

On the level of Knum
0 (S) shifts result in sign changes. More generally, if G is a

pseudolattice of rank n with exceptional basis, then {±1}n ⋊ Bn acts on the set of
exceptional bases, where {±1}n acts by changing signs of basis elements. Moreover, this
action commutes with the action of isometries ϕ : G→ G. If two exceptional bases lie in
the same orbit of {±1}n ⋊Bn, we say the exceptional bases are related by mutations up to
signs. In this chapter, we will only consider pseudolattices with surface-like structure. If we
write that two exceptional bases e•, f• are related by mutations up to signs and isometry
we mean that there exists an isometry ϕ : G→ G which preserves the point-like element
ϕ(p) = p and ϕ(e•) and f• are related by mutations up to signs.

Let G be a surface-like pseudolattice with exceptional basis. We will frequently mutate
to norm-minimal bases, where the norm of an exceptional basis e• = (e1, . . . , en) is the
number

∑
i r(ei)

2. We say an exceptional basis is norm-minimal if there is no exceptional
basis related by mutations and sign changes with smaller norm. Recall that due to the work
of Perling, norm-minimal exceptional bases can be understood via Perling’s algorithm:

Theorem 1.2.16 ([Kuz17, Thm. 5.9], cf. [Per18, Cor. 9.12, Cor. 10.7]). Let G be a
geometric surface-like pseudolattice. Any exceptional basis in G can be transformed by
mutations and sign changes into a norm-minimal exceptional basis consisting of 3 or 4
elements of rank 1 and all other elements of rank 0.

1.2.4. Blow-up and blow-down. We recall the classical blow-up and blow-down
construction for surface-like pseudolattices and give a detailed discussion of [dTVdB16, § 5]
as we make use of these observations in Section 1.3. Let G be a unimodular surface-like
pseudolattice with point-like element p. We denote the induced codimension filtration by
F •G. Let e• = (e1, . . . , en) be a basis of G and let M be the Gram matrix of the pairing χ
with respect to this basis. Choosing an element z ∈ F 2G = Zp, we construct the numerical
blow-up of G at z as follows: We extend the lattice G by adding a formal element f , i.e., we
consider the free abelian group Blz G := Zf ⊕G. The pairing χnew on Blz G is defined via

χnew|G⊗G := χ,

χnew(g, f) := 0 for all g ∈ G,

χnew(f, f) := 1,

and χnew(f, g) := χ(z, g) for all g ∈ G.

In abuse of notation we write χ also for the pairing on Blz G. As outlined below, this
definition matches the geometric situation of a blow-up. The Gram matrix with respect to
the basis (f, e1, . . . , en) is of the form

1 χ(z, e1) · · · χ(z, en)
0
...
0

M

 .

Note that Blz G is again unimodular and surface-like with point-like element p ∈ G ⊆ Zf⊕G.
The latter follows from writing z = np for some n ∈ Z which shows χ(p, f) = 0 = χ(z, p) =
χ(f, p). The orthogonal complement of p in Blz G is F 1Blz G = F 1G ⊕ Zf and χ is
symmetric on F 1G ⊕ Zf as it is symmetric on both summands and χ(F 1G, f) = 0 =
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nχ(p, F 1G) = χ(f, F 1G). In particular, F 2Blz G = Zp = F 2G. Therefore the point-like
element p does not change under blow-up; this allows us to blow up the same element
multiple times. Note that the image of f in

NS(Blz G) = NS(G)
⊥
⊕ Zf

defines an element of self-intersection −1. It is the analogue of a (−1)-curve and can be
blown down, but in contrast to the geometric setting, we cannot detect whether a divisor
of self-intersection −1 is an actual curve or not.

Again we compare the construction to the geometric one (cf. Example 1.2.5). Let S be

a smooth projective surface and let S̃ be the blow-up at a point p ∈ S with exceptional
divisor E:

S̃ S

E {p}.

π

ψ

j i

For F ∈ Db(S) a Riemann–Roch computation shows

χ(j∗OE(−1)[1],Lπ∗F ) = −χ(j∗OE(−1),Lπ∗F ) = rk(F) = χS(Op,F),

see [Per18, Ex. 4.1]. Finally, Orlov’s blow-up formula yields a semiorthogonal decomposition

Db(S̃) = ⟨j∗(ψ∗Db({p})⊗ OE(−1)),Lπ∗Db(S)⟩ = ⟨j∗OE(−1),Lπ∗Db(S)⟩
which coincides with the numerical blow-up construction with f = [j∗OE(−1)[1]].

The inverse operation on a unimodular surface-like pseudolattice G is the blow-down
or contraction. Let f ∈ G be a rank zero vector such that q(f, f) = −χ(f, f) = −1.
Then the contraction of f is the lattice Gf := ⊥f = {v ∈ G | χ(v, f) = 0} ⊆ G with
pairing χ|⊥f⊗⊥f . The pseudolattice Gf is again surface-like with point-like element p
and unimodular; see [Kuz17, Lem. 5.1]. If G is geometric, so is Gf . In the following we
prove a slightly modified version of [dTVdB16, Lem. 5.1], which will be a key tool towards
establishing Theorem 1.3.1.

Proposition 1.2.17. Let G be a unimodular surface-like pseudolattice and f ∈ G a
rank zero vector of self-intersection −1. Denote by S the Serre operator of G, then
z := (S − 1)(f) ∈ F 2Gf defines an element such that Blz Gf = G.

Proof. Since f ∈ F 1G = p⊥, we know that (S − 1)(f) ∈ F 2G = Zp is a multiple of p and
lies in Gf . Let H := Blz(Gf ) = Zg ⊕ Gf be the blow-up of Gf at z. Then the pairing
on H extends the pairing of Gf with the property that g is an element of rank zero and
of self-intersection −1. Consider the morphism G → H sending f 7→ g and v 7→ v for
all v ∈ Gf . We verify that this is an isometry: Obviously χ(g, g) = 1 = χ(f, f) and
χ(v, f) = 0 = χ(v, g) for v ∈ Gf . Let v ∈ Gf , then

χ(g, v) = χ(z, v) = χ(v, z) = χ(v, S(f))− χ(v, f) = χ(f, v),

where we have used that z is a multiple of p and χ(v, f) = 0 for all v ∈ Gf . □

Clearly (Blz G)f = G, thus blow-up and blow-down are mutually inverse.

Remark 1.2.18. Comparing the blow-down construction described above to the construction
in [Kuz17, § 5], one observes that the contraction of an exceptional element of rank zero
can also be defined as the right orthogonal f⊥ since left and right orthogonal complements
are isomorphic.

We end this section by recalling formulae for the defect of the contraction.
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Lemma 1.2.19 ([Kuz17, Lem. 5.8]). Let G be a surface-like pseudolattice and f ∈ G an
exceptional element of rank zero. Then the defect of G equals

δ(G) = δ(Gf ) + (1− q(KG, f)
2).

If G is geometric, then δ(G) ≤ δ(Gf ) with equality if and only if q(KG, f) = ±1.

In the same manner a formula for the degree of the blow-up was obtained in [dTVdB16,
Lem. 5.2.1]. The degree of a unimodular surface-like pseudolattice G is deg(G) = K2

G and
is related to the defect by the formula

(1.2.20) deg(G) = 12 + δ(G)− rk(G).

Lemma 1.2.21 ([dTVdB16, Lem. 5.2.1]). Let G be a unimodular surface-like pseudolattice
and let σ ∈ G be an element such that its image σ̄ generates Blz G/F

1Blz G ∼= Z. Then
degBlz G = degG− χ(σ, z)2.

Lemma 1.2.21 above requires a justification in our context, as it is possibly not clear
that the canonical class in the sense of [dTVdB16] coincides with the one in Lemma 1.2.9.

Proof of Lemma 1.2.21. The image ω of (S − 1)(σ) in NS(G) is the canonical class of G in
the sense of [dTVdB16, Def. 3.5.1] and in [dTVdB16, Lem. 5.2.1] the statement is shown
for degG := q(ω, ω). Therefore it is enough to show:

Claim. Let G be a unimodular surface-like pseudolattice, σ ∈ G/F 1G a generator and
ω = (S − 1)(σ) ∈ NS(G). Then ω satisfies (1.2.10) up to sign, i.e.,

±q(ω, λ(v, w)) = χ(v, w)− χ(w, v)

for all v, w ∈ G and λ as in Lemma 1.2.9.

Proof of the Claim. Since G is unimodular, the rank map induces an isomorphism
r : G/F 1G → Z. Let σ ∈ G be a vector such that σ̄ generates G/F 1G. Up to possibly
replacing σ by −σ we can write any v ∈ G as r(v)σ + τ(σ) with τ(σ) ∈ F 1G. Let
ω = (S − 1)(σ) be the canonical class defined by σ and let d(v) := q(τ(v), ω) for all v ∈ G.
By [dTVdB16, Prop. 3.6.2] the equality

(1.2.22) χ(v, w)− χ(w, v) = det

(
d(v) d(w)
r(v) r(w)

)
= r(w)q(τ(v), ω)− r(v)q(τ(w), ω)

holds for all v, w ∈ G. Let λ be the alternating form as in Lemma 1.2.9. Then

−q(ω, λ(v, w)) = −q(r(v)(r(w)σ + τ(w))− r(w)(r(v)σ + τ(v)), ω)

= −q(r(v)r(w)σ + r(v)τ(w)− r(w)r(v)σ − r(w)τ(v), ω)

= q(r(w)τ(v)− r(v)τ(w), ω)

combined with (1.2.22) proves the claim. □

1.3. Proof of Theorem 1.1.2 (i)

Throughout this section let Xk be the blow-up of P2 in k distinct points and let
Gk := Knum

0 (Xk) be the pseudolattice obtained from Xk. Using Vial’s classification, see
Theorem 1.2.13 and Remark 1.2.14, we can rephrase Theorem 1.1.2 (i) as follows:

Theorem 1.3.1. Let e• and f• be two exceptional bases of Gk or of Knum
0 (P1 × P1). Then

there exists an isometry ϕ : G → G preserving the surface-like structure, i.e., ϕ(p) = p,
such that ϕ(e•) and f• are related by mutations up to signs.
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In particular, note that for the Hirzebruch surfaces Σd, by Theorem 1.2.13, we have
that

Knum
0 (Σd) ∼=

{
Knum
0 (P1 × P1) if d is even,

Knum
0 (Blp P2) if d is odd.

In preparation for the proof of Theorem 1.3.1 we compute an explicit form of the
pseudolattices Gk. The surface P2 admits a full exceptional sequence consisting of line
bundles, namely the Beilinson sequence Db(P2) = ⟨OP2 ,OP2(1),OP2(2)⟩. This yields an
exceptional basis of the numerical Grothendieck group G0 := Knum

0 (P2) = Z[OP2 ] ⊕
Z[OP2(1)]⊕ Z[OP2(2)] with Gram matrix

M0 :=

1 3 6
0 1 3
0 0 1

 .

Lemma 1.3.2. Let e• = (e1, e2, e3) be an exceptional basis of G0 with Gram matrix M0,
then a point-like element is given by p := e3 − 2e2 + e1.

Proof. For a closed point i : {x} ↪→ P2 the skyscraper-sheaf i∗k(x) = Ox admits a Koszul
resolution

[0 → OP2(−2) =

2∧
OP2(−1)⊕2 → OP2(−1)⊕2 → OP2 → 0] ∼= Ox.

Thus, we obtain after twisting by OP2(2)

[Ox] = [OP2(2)]− 2[OP2(1)] + [OP2 ] = e3 − 2e2 + e1 ∈ Knum
0 (P2). □

Remark 1.3.3. The point-like element can also be computed directly from the pseudolattice
using the explicit description of [dTVdB16, Lem. 3.3.2]. Namely if V := GQ, then
F 2V = Im(S − 1)2 and F 2V = Qp. Thus p spans the line Im(S − 1)2 over Q and is
primitive. In the case of P2 one computes S =M−1

0 MT
0 and

(S − 1)2 =

 9 9 9
−18 −18 −18
9 9 9

 .

Hence, p = ±(1,−2, 1).

By the blow-up formula we compute Gram matrices Mk of the pseudolattices Gk,
namely

Mk :=



1 0 · · · 0 1 1 1
0 1 · · · 0 1 1 1
...

. . .
...

...
...

0 0 · · · 1 1 1 1
0 0 · · · 0 1 3 6
0 0 · · · 0 0 1 3
0 0 · · · 0 0 0 1


=

idk×k

1 1 1
...

...
...

1 1 1
0 M0

 ,

since χ(p, ei) = 1 for i = 1, 2, 3. Denote by b1, . . . , bk, e1, e2, e3 the exceptional basis
corresponding to this Gram matrix. The elements bi are all orthogonal to p, so of rank
zero and the corresponding images in NS(G) have self-intersection −1. Here, we have
numerically blown up the point p in order to obtain only positive signs in the Gram matrix.
We first verify Theorem 1.3.1 in the minimal cases:

Proposition 1.3.4 ([Kuz17, Cor. 4.24]). Any two exceptional bases in Knum
0 (P2) are related

by mutations up to sign and isometry.
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Proof. By [Kuz17, Cor. 4.24] norm-minimal exceptional bases of Knum
0 (P2) correspond

to the Beilinson sequence ⟨OP2 ,OP2(1),OP2(2)⟩. Therefore any two exceptional bases are
related by mutations up to sign and isometry. □

Proposition 1.3.5. Any two exceptional bases in Knum
0 (P1 × P1) are related by mutations

up to sign and isometry.

Proof. If G admits a norm-minimal basis consisting of objects of nonzero rank, G is
isometric to Knum

0 (P1 × P1) and the norm-minimal basis corresponds to one of the full
exceptional collections

Db(P1 × P1) = ⟨OP1×P1 ,OP1×P1(1, 0),OP1×P1(c, 1),OP1×P1(c+ 1, 1)⟩

for some c ∈ Z; see [Kuz17, Cor. 4.26]. The corresponding Gram matrix is

Dc :=


1 2 2c+ 2 2c+ 4
0 1 2c 2c+ 2
0 0 1 2
0 0 0 1

 ,

see [Kuz17, Ex. 3.7]. Now we mutate the third and fourth basis vector and compute the
corresponding Gram matrices:

L3,4(b1, . . . , b4) = (b1, b2,−2b3 + b4, b3),


1 2 −(2(c− 1) + 2) 2(c− 1) + 4
0 1 −2(c− 1) 2(c− 1) + 2
0 0 1 −2
0 0 0 1

 ,

R3,4(b1, . . . , b4) = (b1, b2, b4, b3 − 2b4),


1 2 2(c+ 1) + 2 −(2(c+ 1) + 4)
0 1 2(c+ 1) −(2(c+ 1) + 2)
0 0 1 −2
0 0 0 1

 .

Multiplying −2b3 + b4 by −1 in the first case and b3 − 2b4 in the second case, we observe
that all bases corresponding with Gram matrices Dc are related by mutations up to sign
and isometry. □

For later use in the proof of Theorem 1.3.1, we also treat the surfaces X1 and X2 by
hand.

Proposition 1.3.6. Any two exceptional bases in Knum
0 (X1) are related by mutations up

to sign and isometry.

Proof. Since G1 := Knum
0 (X1) is not isometric to Knum

0 (P1 × P1), [Kuz17, Cor. 4.27] shows
that an exceptional basis of G1 with all ranks nonzero is not norm-minimal. Thus, by
Perling’s algorithm Theorem 1.2.16, a norm-minimal basis has the form e1, . . . , e4, where
e1 is of rank zero and e2, e3 and e4 are of rank one. By Vial’s classification Theorem 1.2.13,
the contraction (G1)e1 is isomorphic to G0 = Knum

0 (P2) with norm-minimal exceptional
basis e2, e3, e4. Since blow-up and blow-down are mutually inverse, e1 results from blowing
up a point z = np ∈ Zp. Observe that δ(G1) = δ((G1)e1) = 0, so by (1.2.20) the degree
has to decrease by 1 from G1 to (G1)e1 . Thus by Lemma 1.2.21 n = ±1 and χ(σ, z) = ±1.
Possibly after changing the sign of e1, the Gram matrix with respect to e1, . . . , e4 isM1. □

The surface X2 can be obtained from blowing up P2 in 2 points or from blowing
up P1 × P1 in 1 point. So a priori, there could potentially be two different types of
norm-minimal exceptional bases. We compute that this is not the case.
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Proposition 1.3.7. Let X2 be the blow-up of P2 in 2 points and let G2 := Knum
0 (X2). Then

any two exceptional bases are related by mutations up to sign and isometry. In particular,
any norm-minimal exceptional basis is of norm 3.

Proof. We show that any exceptional basis can be mutated to an exceptional basis with
Gram matrix M2. Let e• be an exceptional basis. Again with Perling’s algorithm we
mutate e• to a norm-minimal basis a1, . . . , al, b1, . . . , bm with ai of rank zero and bi of rank
one. Now m ∈ {3, 4}, since the (iterated) contraction of the rank zero elements yields
a minimal geometric surface-like pseudolattice, which admits an exceptional basis; that
implies it is isometric to Knum

0 (P2) or to Knum
0 (P1 × P1). Assume for contradiction m = 4.

Then the contraction (G2)a1 has Gram matrix

Dc :=


1 2 2c+ 2 2c+ 4
0 1 2c 2c+ 2
0 0 1 2
0 0 0 1


with respect to b1, . . . , b4, see [Kuz17, Ex. 3.7]. As mutations in the contraction (G2)a1
lift to mutations of G2 which leave the contracted vectors invariant, we can assume that
c = 0 by Proposition 1.3.5. Moreover, as in the proof of Proposition 1.3.6, a1 is obtained
by blowing up Knum

0 (P1 ×P1) in ±p. After possibly changing the sign of a1, we can assume
a1 results from blowing up p. Now we want to find a sequence of mutations, which reduces
the norm of (a1, b1, . . . , b4). We compute:

(a1, b1, b2, b3, b4)

L1,2−−→ (−a1 + b1, a1, b2, b3, b4)

R2,3−−→ (−a1 + b1, b2, a1 − b2, b3, b4)

R3,4−−→ (−a1 + b1, b2, b3, a1 − b2 − b3, b4)

L1,2−−→ (a1 − b1 + b2,−a1 + b1, b3, a1 − b2 − b3, b4)

L2,3−−→ (a1 − b1 + b2, a1 − b1 + b3,−a1 + b1, a1 − b2 − b3, b4)

R4,5−−→ (a1 − b1 + b2, a1 − b1 + b3,−a1 + b1, b4, a1 − b2 − b3 + 3b4).

(1.3.8)

Since the rank map is additive one easily computes that the last basis is of rank (0, 0, 1, 1, 1).
But this contradicts the assumption that (a1, b1, . . . , b4) was norm-minimal. Thus m = 3
and the exceptional basis a1, a2, b1, b2, b3 results from blowing up Knum

0 (P2) in 2 points n1p
and n2p. After possibly changing signs, we can assume n1, n2 ≥ 0. The fact that G2 and
(G2)a1,a2 = G0 have defect zero implies that also (G2)a1 has defect zero, since contraction
only increases the defect by Lemma 1.2.19. Therefore the degree has to increase by 1 in
each contraction and we have n1 = n2 = 1 by Lemma 1.2.21. Hence, the Gram matrix
with respect to to a1, a2, b1, b2, b3 is M2. □

Remark 1.3.9. One can further compute the Gram matrix with respect to (a1−b1+b2, a1−
b1 + b3,−a1 + b1, b4, a1 − b2 − b3 + 3b4) as

1 0 −1 −1 −1
0 1 −1 −1 −1
0 0 1 3 6
0 0 0 1 3
0 0 0 0 1

 .
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Further, the collection above corresponds to the full exceptional collection

Db(Blp P1 × P1) =

⟨Ol̃1(−1)[1],Ol̃2(−1)[1],OBlp P1×P1(E),OBlp P1×P1(H1 +H2),OBlp P1×P1(2H1 + 2H2 − E)⟩

up to shifts, where p = (p1, p2) ∈ P1 × P1, H1 and H2 are the pullbacks of hyperplane
classes on the corresponding factors, E is the exceptional divisor over p, H1 − E is the
class of the strict transform l̃1 of the line {p1} × P1, and H2 − E is the class of the strict

transform l̃2 of the line P1 × {p2}. Both computations will not be used subsequently.

Proof of Theorem 1.3.1. We show the following statement: Given any exceptional basis
a• of Gk we can find another exceptional basis related by mutations and sign changes
to a• such that the Gram matrix is of the form Mk and the first k basis elements have
rank zero and the last 3 have rank one. The unimodularity then ensures that the involved
isometry preserves the surface-like structure given by p, since the isometry respects the
rank function. As we have treated the cases k ≤ 2 by hand, we can assume k > 2. Given
any exceptional basis of Gk we can mutate the basis to a norm-minimal basis

(a1, . . . , al, b1, . . . , bm)

where the elements ai are of rank zero and the bi are of rank one and m is equal to 3
or 4; see Theorem 1.2.16. Contracting the rank zero objects ai, we obtain a minimal
unimodular geometric surface-like pseudolattice (Gk)a1,...,al admitting an exceptional basis.
Thus the defect of (Gk)a1,...,al is zero by [Kuz17, Cor. 5.7]. Contraction of geometric pseu-
dolattices only increases the defect, cf. Lemma 1.2.19, thus all intermediate pseudolattices
(Gk)a1,...,ai are unimodular geometric surface-like pseudolattices with defect zero and admit
an exceptional basis. This implies that they are isometric to blow-ups of Knum

0 (P2) as
long as k − i ≥ 2 by Theorem 1.2.13. Choosing i such that k − i = 2, the pseudolattice
(Gk)a1,...,ai is isometric to the blow-up of 2 points in (Gk)a1,...,ai . By Proposition 1.3.7
any two exceptional bases of (Gk)a1,...,ai are related by mutations up to sign and we can
mutate the exceptional basis to a basis of norm 3. Now mutations in the contraction lift to
mutations of Gk, which leave the contracted vectors invariant. Hence, m = 3 and l = k.
In particular, (Gk)a1,...,ak is isometric to G0 and we may assume that b1, b2, b3 have Gram
matrix M0.

As seen in Section 1.2.4, blowing up and contracting are mutually inverse operations.
Thus the basis a1, . . . , ak, b1, b2, b3 is a basis obtained from blowing up G0 in k points. The
point-like element of G0 is unique up to sign, as discussed in [Kuz17, Ex. 3.5], hence we
can assume p = b3 − 2b2 + b1. In each intermediate step (Gk)a1,...,ai+1 is obtained from
(Gk)a1,...,ai by blowing up a point ni+1p with ni+1 ∈ Z. As each (Gk)a1,...,aj has defect zero
we deduce nj = ±1 for all j. Indeed, by (1.2.20) the degree has to decrease by −1 in each
step and Lemma 1.2.21 yields

deg((Gk)a1,...,ai) = deg((Gk)a1,...,ai+1)− χ(σ, ni+1p)
2 = deg((Gk)a1,...,ai+1)− n2i+1.

Up to possibly changing signs, we can arrange χ(ai, bj) = 1 for all i, j. Thus the Gram
matrix has the desired form. □

1.4. Blow-up of 9 Points

Full exceptional collections on del Pezzo surfaces were studied in [KO94] and in [EL16].
In [EXZ21] and [IOU21] similar results for weak del Pezzo surfaces, i.e., surfaces with
nef and big anticanonical divisor, were obtained. In this section, we expand the class of
examples by considering the blow-up of P2 in 9 very general points. In this situation, we
can assume that there is a unique cubic curve in P2 passing through each of the 9 points
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with multiplicity 1. Then the divisor class of the strict transform of this cubic coincides
with the anticanonical divisor −KX = 3H −

∑9
i=1Ei of the blow-up X. Here H is the

pullback of a hyperplane class in P2 and Ei is the exceptional divisor corresponding to the
blow-up of the point pi. Therefore, −KX is nef but not big as (−KX)

2 = 0, so X is not a
weak del Pezzo surface. Additionally, −KX is not basepoint-free and for that reason the
techniques developed in [Kul97] cannot be applied. In this section we exclusively work over
the field of complex numbers.

1.4.1. Toric systems and numerically exceptional collections. We recall the
necessary terminology of toric systems as introduced by Hille–Perling in [HP11, §§ 2-3].

Definition 1.4.1. Let X be a smooth projective surface. A sequence of divisors A1, . . . , An
on X is a toric system if n ≥ 3 and one has Ai ·Ai+1 = 1 = A1 ·An for all 1 ≤ i ≤ n− 1,
Ai ·Aj = 0 for |i− j| > 1 except {i, j} = {1, n}, and A1 + · · ·+An ∼lin −KX .

If χ(OX) = 1 and n = rkK0(X), we have a 1:1-correspondence between toric systems
on X and numerically exceptional collections consisting of line bundles of length n up to
twists with line bundles:{
toric systems (A1, . . . , An)

}
/ ∼lin↔

{
numerically exceptional collections

of line bundles (OX(D1), . . . ,OX(Dn))

}
/Pic(X).

Although not stated in this way, the correspondence can be deduced from [Via17, Prop. 2.1]
(a system of divisors as in [Via17, Prop. 2.1 (iii)] defines a toric system by [Via17, Prop. A.3]
where KX is the special characteristic element). A toric system (A1, . . . , An) and a choice
of a divisor D1 defines a numerically exceptional collection (OX(D1), . . . ,OX(Dn)) given
by

Di+1 := D1 +A1 + · · ·+Ai.

Conversely, any numerically exceptional collection of line bundles (OX(D1), . . . ,OX(Dn))
gives rise to a toric system via

Ai :=

{
Di+1 −Di for 1 ≤ i ≤ n− 1,

D1 −KX −Dn for i = n.

A toric system is called exceptional if the corresponding collection of line bundles is
exceptional. Equivalently, each divisor Ai + · · ·+Aj (1 ≤ i ≤ j ≤ n− 1) is left-orthogonal
(a divisor D is called left-orthogonal if hi(−D) = 0 for all i). Moreover, (A1, . . . , An) is an
(exceptional) toric system if and only if (A2, . . . , An, A1) is an (exceptional) toric system.

Orlov’s blow-up formula for full exceptional collections can be transferred to toric
systems via so-called augmentations; see [HP11, § 5] and [EL16, § 2.6]: If X ′ is a surface
with toric system A′

1, . . . , A
′
n and p : X → X ′ the blow-up of X in a closed point p ∈ X ′

with exceptional divisor E ⊆ X, denote by Ai := p∗A′
i the pullback of the divisors. We

obtain a toric system on X, namely

E,A1 − E,A2, . . . , An−1, An − E.

This toric system and all its cyclic shifts are called augmentations. Conversely, a blow-down
operation for toric systems can be defined.

Proposition 1.4.2 ([EL16, Prop. 3.3]). Let A1, . . . , An be a toric system on a surface X
such that there exists an index 1 ≤ m ≤ n with Am a (−1)-curve in X. Let p : X → X ′ be
the blow-down of Am. Then A1, . . . , An is an augmentation of a toric system A′

1, . . . , A
′
n−1

on X ′.
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An essential observation for the proof of Theorem 1.1.3 is that [EL16, Lem. 3.4]
generalizes to the blow-up of P2 in 9 points. Recall that a (−1)-curve in a surface S is a
smooth rational curve in S of self-intersection −1.

Lemma 1.4.3. Let X be the blow-up of P2 in 9 points in very general position. Then a
divisor D is the class of a (−1)-curve if and only if D2 = −1 and χ(D) = 1.

Proof. First of all, Riemann–Roch yields χ(D) = 1 + 1
2(D(D − KX)). Thus, if D is

the class of a (−1)-curve, then D2 = −1 and χ(D) = 1. For the converse direction
let D be a divisor with D2 = −1 and χ(D) = 1. As D2 = −1 we have −KXD = 1.
Now χ(D) = h0(D) − h1(D) + h2(D) and h2(D) = h0(KX − D) by Serre duality. The
intersection −KX(KX − D) = KXD = −1 implies that KX − D is not effective, since
−KX is nef. Therefore h2(D) = h0(KX −D) = 0 and in order for χ(D) = 1 to be fulfilled,
D must have at least one nontrivial global section, i.e., D must be effective. We write
D =

∑
i kiCi, where the Ci are pairwise distinct integral curves in X and the ki are positive

integers. From the equation 1 = −KXD =
∑

i ki(−KX)Ci and the nefness of −KX we
derive that among the curves Ci there is one C0 occurring with coefficient 1 and satisfying
−KXC0 = 1. All other Ci lie in K⊥

X . Note that by [Fer05, Prop. 2.3] any integral curve

with negative self-intersection is a (−1)-curve. Therefore no curve in K⊥
X can have negative

self-intersection, as for (−1)-curves the intersection with the canonical class is nonzero.
Hence, in order to achieve −1 = D2 we must have C2

0 = −1, C2
i = 0 and C0Ci = 0 for all

i ̸= 0. Let A := D − C0. Then A ∈ K⊥
X and A2 = 0. But this implies A = nKX for some

n ∈ Z, since any isotropic vector in K⊥
X is a multiple of KX . Indeed,

KX ,KX − E1, E2 − E3, . . . , E8 − E9, H − 3E9

is a basis of Pic(X) inducing an orthogonal decomposition

Pic(X) = ⟨KX ,KX − E1⟩ ⊕ ⟨E2 − E3, . . . , E8 − E9, H − 3E9⟩.
The lattice ⟨E2−E3, . . . , E8−E9, H − 3E9⟩ is even and negative definite, i.e., it is E8(−1),
and the intersection form on ⟨KX ,KX − E1⟩ is given by the matrix(

0 1
1 1

)
.

In particular, K⊥
X/ZKX is negative definite, so A = nKX . Now C0KX = −1 together with

C0A = 0 implies n = 0 and hence C0 = D. □

Remark 1.4.4 (On the position of the blown up points). The position of the 9 blown up
points is important for only two facts: On the one hand we need to choose the position
general enough so that there exists a unique cubic passing through the 9 points with
multiplicity 1 and on the other hand in the proof of Lemma 1.4.3 we use the result of
[Fer05] which depends on the position of the points. For the latter the assumptions are
made more precise in [Fer05, Def. 2.1]. Alternatively one can replace [Fer05, Prop. 2.3]
by [Nag60, Prop. 12] and assume that the points are in a position described in [Nag60,
Prop. 9] to ensure that the surface carries no integral curve C with C2 ≤ −2.

Remark 1.4.5. We will see in Section 1.5 that the conclusion of Lemma 1.4.3 does not hold
for blow-ups of 10 or more points.

1.4.2. Roots in the Picard lattice. Recall that any unimodular lattice Λ contains
a root system with roots given by the elements α ∈ Λ such that α2 = ±1 or α2 = ±2. For
such a root α ∈ Λ the reflection along α⊥ is given by

sα(x) := x− 2
(x · α)
α2

α.
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Any such reflection is an orthogonal transformation of Λ. In particular, if Λ is even and
negative-definite, then the roots of Λ are precisely the elements of square −2.

Let X be the blow-up of P2 in n ≥ 3 points. Let H be the pullback of a hyperplane
class and let E1, . . . , En be the exceptional divisors. Then H,E1, . . . , En is an orthogonal
basis of the Picard lattice Pic(X) such that H2 = 1 and E2

i = −1. The elements
α1 := E1 − E2, . . . , αn−1 := En−1 − En and α0 := H − E1 − E2 − E3 are roots in Pic(X)
and we denote by WX the reflection group generated by sαi , 0 ≤ i ≤ n− 1. All roots αi lie
in K⊥

X , thus
WX ⊆ O(Pic(X))KX

⊆ O(Pic(X)),

where O(Pic(X))KX
is the stabilizer of the canonical class KX = −3H +

∑
iEi.

Lemma 1.4.6. Let X be the blow-up of P2 in n points, where 3 ≤ n ≤ 9. Then the
reflection group WX = ⟨sα0 , . . . , sαn−1⟩ equals the stabilizer O(Pic(X))KX

.

Proof. First note that the equality WX = O(Pic(X))KX
does not depend on the position

of points and not on the base field. Thus, we can assume that the points pi lie in very
general position, −KX is class of an irreducible reduced curve in X, and that the base field
is C. Let σ : X → P2

C be the blow-up morphism and denote by Ei ⊆ X be the exceptional
divisor over the point pi Then Lemma 1.4.3 (or [EL16, Lem. 3.4] if n ≤ 8) implies that
any orthogonal transformation in φ ∈ O(Pic(X))KX

maps (−1)-curves to (−1)-curves. In
particular, E1, . . . , En is mapped to an orthogonal set of (−1)-curves E′

1, . . . , E
′
n and the

class H of a hyperplane pulled back along σ is mapped to

H ′ := φ(H) =
1

3
φ

(
−KX +

n∑
i=1

Ei

)
=

1

3

(
−KX +

n∑
i=1

E′
i

)
.

By [Har85, Thm. 0.1], which is essentially a reformulation of results in [Nag60], we obtain
φ ∈WX . Alternatively, φ ∈WX follows from [DO88, Ch. VI, Thm. 2]. □

1.4.3. A weak del Pezzo surface admitting a numerically exceptional col-
lection of maximal length which is not exceptional. We cannot expect that the
conclusion of Lemma 1.4.3 holds true for rational surface of higher Picard rank, as we
show in Section 1.5. But already if we blow up less than 9 points in special position,
the conclusion of Lemma 1.4.3 does not hold. As a consequence, in general a maximal
numerically exceptional collection does not need to be exceptional. In Proposition 1.4.7 we
construct such an example by blowing up 8 points in a special position. Similar examples
were already obtained for Hirzebruch surfaces Σd with even d in [EL16, Rmk. 2.18].

Proposition 1.4.7. Let π : X → P2 be the blow-up of 8 points p1, . . . , p8 such that p1, p2, p3
lie on a line L and p4, . . . , p8 on a smooth irreducible conic curve C such that p1, p2, p3 /∈ C
and p4, . . . , p8 /∈ L. Then X is a weak del Pezzo surface, i.e., −KX is nef and big, but
admits a maximal numerically exceptional collection consisting of line bundles which is not
exceptional. Moreover, X admits an effective divisor D satisfying D2 = −1, χ(D) = 1 and
H1(X,OX(−D)) ̸= 0.

Proof. Denote by Ei the exceptional divisor corresponding to the blow-up of pi and let
H be the pullback of the hyperplane class in P2. Then the anticanonical divisor satisfies
−KX = 3H −

∑8
i=1Ei and thus is equal to the sum of the strict transform L̃ of L and

the strict transform C̃ of C. Hence, the intersection of −KX with any other curve is
non-negative and one checks that −KX L̃ = 0 is zero and −KXC̃ = 1. Therefore −KX is
nef and hence (−KX)

2 = 1 > 0 implies that −KX is big. Consider the divisor

D := 4H − 2E1 − 2E2 − 2E3 − E4 − · · · − E8 = 2L̃+ C̃,



1.4. BLOW-UP OF 9 POINTS 23

which satisfies D2 = −1 and −KXD = 1. Then D is effective, but since D · L̃ = −2,
any divisor in the linear system |D| contains L̃ as an irreducible component. Thus, D
cannot be the class of a (−1)-curve. Further we compute h1(−D) = 1: Riemann–Roch
yields χ(−D) = 0 and since D is effective, −D admits no global sections. This gives
h1(−D) = h2(−D) = h0(KX +D) = h0(H − E1 − E2 − E3) = 1. Thus the conclusion of
Lemma 1.4.3 does not hold for D.

Finally, we complete D into a toric system in order to obtain a maximal numerically
exceptional collection consisting of line bundles. The set of orthogonal transformations
of Pic(X) fixing the canonical class KX coincides with the orthogonal group of K⊥

X . A

computation shows that K⊥
X identifies with the E8(−1)-lattice and therefore the orthogonal

group is the Weyl group of E8. It is known that the Weyl group acts transitively on the
set of roots; see, e.g., [Hum78, § 10.4 Lem. C]. Moreover, the map F 7→ F −KX defines a
bijection

{roots inPic(X)} ∼−→ {F ∈ Pic(X) | F 2 = KXF = −1},
see, e.g., [Dol12, § 8.1.1]. Hence, there exists an orthogonal transformation T of Pic(X)
which fixes KX and sends E1 to D. Therefore, the image of the toric system associated to

Db(X) = ⟨OX ,OX(E1), . . . ,OX(E8),OX(H),OX(2H)⟩
under T is a toric system which corresponds to a maximal numerically exceptional collection
consisting of line bundles, which is not exceptional since H1(X,OX(D)) ̸= 0. □

1.4.4. Towards Theorem 1.1.3. The proof of Theorem 1.1.3 is separated in two
steps. Recall that [EL16, Thm. 3.1] states that, on a del Pezzo surface, any toric system is
obtained from a sequence of augmentations from an exceptional toric system on P2 or a
Hirzebruch surface. In the first step, we generalize this result to the blow-up X of 9 very
general points. In the second step, we prove the transitivity of the braid group action, as
stated in Theorem 1.1.3, by realizing each orthogonal transformation of Pic(X) fixing KX

as a sequence of mutations.
The following Lemma 1.4.8 ensures that we can reduce X to a del Pezzo surface by

contracting any (−1)-curve. As we were unable to find a suitable statement in the literature,
we include a proof.

Lemma 1.4.8. Let X be the blow-up of P2 in 9 very general points and let E ⊆ X be a
(−1)-curve. Then the surface Y obtained from blowing down E is a del Pezzo surface.

Proof. Recall that the blow-up of at most 8 points in P2 is a del Pezzo surface if and only if
not 3 of the points lie on a line, not 6 lie on a conic, and not 8 of them on a cubic having a
node at one of them. Therefore the points are in special position if and only if the surface
admits a (−k)-curve with k ≥ 2, namely the strict transform of the cubic through 8 blown
up points with a node at one of them, the conic through 6 blown up points, or the line
through 3 blown up points. We further observe that the equivalence also holds true if the
points are chosen infinitely near: If a point p is blown up on an exceptional divisor E,
then the class of the strict transform of E is E − Ep, where Ep is the exceptional divisor
corresponding to the blow-up of p. We compute (E − Ep)

2 = −2 in that case.
Let Y be the blow-down of the (−1)-curve and π : X → Y the blow-up map with center

p ∈ Y and exceptional divisor E. Then for any curve C in Y , the strict transform in X has
divisor class p∗C −mE, where m is the multiplicity of C at p. Thus the self-intersection
of the strict transform of C is C2 −m2. By [Fer05, Prop. 2.3], X has no integral curves of
self-intersection ≥ 2, hence Y has no (−k)-curves with k ≥ 2. Now Y is obtained from P2

by a sequence of blow-ups of (possibly infinitely near) 8 points. As Y has no (−k)-curves
with k ≥ 2, Y must be a del Pezzo surface. □
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Theorem 1.4.9. Let X be the blow-up of P2 in 9 very general points. Any toric system on
X of length 12 is a standard augmentation, i.e., it is obtained by a sequence of augmentations
from a full exceptional toric system on P2 or from a full exceptional toric system on a (non
necessarily minimal) Hirzebruch surface.

Proof. Let A1, . . . , A12 be a toric system on X. By Riemann–Roch, we have χ(Ai) = 2+A2
i

for all 1 ≤ i ≤ 12. By Lemma 1.4.3, Lemma 1.4.8, and [EL16, Thm. 3.1] we only need
to show that there is a divisor Ai with A2

i = −1. In this situation the argument of
Elagin–Lunts still applies: By [HP11, Prop. 2.7] there exists a smooth toric surface Y
with torus invariant irreducible divisors D1, . . . , D12 such that D2

i = A2
i for any i. Since

Y is not minimal, Y contains (−1)-curve which must be torus invariant as otherwise the
self-intersection would be non-negative. We conclude that one of the Di squares to −1,
hence there exists Ai with A

2
i = −1. □

Corollary 1.4.10. On the blow-up of P2 in 9 very general points any numerically excep-
tional collection of maximal length consisting of line bundles is a full exceptional collection.

Proof. By [EL16, Prop. 2.21] a standard augmentation corresponds to a full exceptional
collection. □

In order to conclude the proof of Theorem 1.1.3 we are left to show that any two full
exceptional collections resulting from two different sequences of augmentations are related
by mutations and shifts. On a del Pezzo surface, an exceptional object is completely
determined by its class in the Grothendieck group:

Lemma 1.4.11 (Exceptional objects on del Pezzo surfaces, [Gor88; KO94]). Let X be a
del Pezzo surface and let E ∈ Db(X) be an exceptional object. Then E is isomorphic to
some F [k], where F is an exceptional sheaf on X and k ∈ Z. Moreover F is either locally
free or a torsion sheaf of the form OC(d), where C is a (−1)-curve. In particular, two
exceptional objects with the same image in K0(X) only differ by an even number of shifts.

Pointer to references. That every exceptional object is a sheaf up to shift can be found in
[KO94, Prop. 2.10] and [KO94, Prop. 2.9] states that an exceptional sheaf is locally free or
a torsion sheaf of the form OC(d) where C is a (−1)-curve. In the latter case, such torsion
sheaf is clearly uniquely determined by its Chern character and hence by its class in K0(X).
The case of locally free sheaves is treated in [Gor88, Cor. 2.5]. □

For later use in the proof of Theorem 1.4.18 we compute in the following Lemma 1.4.12
a relation by mutations and shifts of two concrete exceptional collections on the blow-up of
P2 in 3 points. The statement of Lemma 1.4.12 can also be deduced from [KO94, Thm. 7.7].
We give an independent proof by computing an explicit sequence of mutations relating
both collections.

Lemma 1.4.12. Let X be the blow-up of 3 points in P2 which do not lie on a line. Then
the full exceptional collections

Db(X) = ⟨OE1(−1),OE2(−1),OE3(−1),OX ,OX(H),OX(2H)⟩

and

Db(X) = ⟨OH−E2−E3(−1),OH−E1−E3(−1),OH−E1−E2(−1),

OX ,OX(2H − E1 − E2 − E3),OX(4H − 2E1 − 2E2 − 2E3)⟩

are related by mutations and shifts.
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Proof. Since X is a del Pezzo surface it is enough to verify the claim in K0(X) by using
Lemma 1.4.11. In K0(X) this becomes a lattice-theoretic computation: Let

ai := [OEi(−1)] and b1 := [OX ], b2 := [OX(H)], b3 := [OX(2H)].

Then the Gram matrix corresponding to the basis (a1, a2, a3, b1, b2, b3) is

(1.4.13)


1 0 0 −1 −1 −1
0 1 0 −1 −1 −1
0 0 1 −1 −1 −1
0 0 0 1 3 6
0 0 0 0 1 3
0 0 0 0 0 1

 .

Similarly to (1.3.8) we have the following sequence of mutations

(a1, a2, a3, b1, b2, b3)
L5,6−−→

R3,4−−→
R2,3−−→

L4,5−−→
L3,4−−→

R2,3−−→
R1,2−−→

L2,3−−→
R3,4−−→

R4,5−−→
L2,3−−→

L3,4−−→
R5,6−−→

(a2 + a3 + 2b1 − 3b2 + b3,−a1 − a3 − 2b1 + 3b2 − b3,−a1 − a2 − 2b1 + 3b2 − b3,

a1 + a2 + a3 + 3b1 − 3b2 + b3, b2, a1 + a2 + a3 + 2b1 − 3b2).

After changing the sign of the first and last basis elements we obtain the exceptional basis

(−a2 − a3 − 2b1 + 3b2 − b3,−a1 − a3 − 2b1 + 3b2 − b3,−a1 − a2 − 2b1 + 3b2 − b3,
(1.4.14)

a1 + a2 + a3 + 3b1 − 3b2 + b3, b2,−a1 − a2 − a3 − 2b1 + 3b2),

which has Gram matrix (1.4.13). Recall that the Chern character on a surface is given by

ch =

(
rk, c1,

1

2
(c21−2 c2)

)
.

We compute

ch(ai) = ch(OEi(Ei)) =

(
0, Ei,−

1

2

)
,

ch(b1) = ch(OX) = (1, 0, 0),

ch(b2) = ch(OX(H)) =

(
1, H,

1

2

)
,

ch(b3) = ch(OX(2H)) = (1, 2H, 2).

Thus (1.4.14) corresponds to the full exceptional collection
(1.4.15)
⟨OH−E2−E3 ,OH−E1−E3 ,OH−E1−E2 ,OX(−H+E1+E2+E3),OX(H),OX(3H−E1−E2−E3)⟩.

Here we denote, in abuse, the strict transform of the line through the points pi and pj by
H − Ei − Ej . Note that KX can be rewritten as

KX = −3H + E1 + E2 + E3

= −3(2H − E1 − E2 − E3) + (H − E2 − E3) + (H − E1 − E3) + (H − E1 − E2),

where 2H − E1 − E2 − E3 can be identified with the pullback of a hyperplane class on P2

considered as the blow-down of (H −E2 −E3), (H −E1 −E3) and (H −E1 −E2). Hence

OH−Ei−Ej (KX) = OH−Ei−Ej (H − Ei − Ej) = OH−Ei−Ej (−1),
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where we have used the projection formula in the first equality. Recall that any twist with
an integer multiple of the canonical line bundle can be realized as a sequence of mutations.
Twisting (1.4.15) by KX yields

⟨OH−E2−E3(−1),OH−E1−E3(−1),OH−E1−E2(−1),

OX(−4H + 2E1 + 2E2 + 2E3),OX(−2H + E1 + E2 + E3),OX⟩.
Finally, by applying the sequence R5,6 ◦R4,5 ◦R5,6 ◦R4,5 of mutations, we obtain the desired
full exceptional collection

Db(X) = ⟨OH−E2−E3(−1),OH−E1−E3(−1),OH−E1−E2(−1),

OX ,OX(2H − E1 − E2 − E3),OX(4H − 2E1 − 2E2 − 2E3)⟩. □

Remark 1.4.16 (Alternate proof of Lemma 1.4.12). Alexander Kuznetsov pointed out to us
that Lemma 1.4.12 can also be proven by the following sequence of mutations:

⟨OE1(−1),OE2(−1),OE3(−1),OX ,OX(H),OX(2H)⟩
R3,4◦R2,3◦R1,2◦R4,5◦R3,4◦R2,3◦R5,6◦R4,5◦R3,4−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

⟨OX ,OX(H),OX(2H),OE1 ,OE2 ,OE3⟩
R5,6◦R4,5◦R3,4−−−−−−−−−→

⟨OX ,OX(H),OE1 ,OE2 ,OE3 ,OX(2H − E1 − E2 − E3)⟩
L4,5◦L3,4◦L2,3−−−−−−−−→

⟨OX ,OX(H − E1),OX(H − E2),OX(H − E3),OX(H),OX(2H − E1 − E2 − E3)⟩
The same sequence of mutations applied to

⟨OH−E2−E3(−1),OH−E1−E3(−1),OH−E1−E2(−1),

OX ,OX(2H − E1 − E2 − E3),OX(4H − 2E1 − 2E2 − 2E3)⟩
yields

⟨OX ,OX(H − E1),OX(H − E2),OX(H − E3),OX(2H − E1 − E2 − E3),OX(H)⟩.
Since OX(2H − E1 − E2 − E3) and OX(H) are orthogonal, this proves the lemma.

Remark 1.4.17 (Geometric interpretation of Lemma 1.4.12). The surface X in Lemma 1.4.12
admits two different blow-up realizations. First one blows up 3 points p1, p2, p3 in P2 and
then one contract the (−1)-curves H −Ei −Ej which are the strict transforms of the lines
through the points pi, pj . The full exceptional collections compared in Lemma 1.4.12 are
the collections resulting from Orlov’s blow-up formula applied to these different realizations
of X. Moreover, this construction defines a birational map P2 99K P2, which is known as
standard quadratic Cremona transformation.

Theorem 1.4.18. On the blow-up X of P2 in 9 very general points, any two full exceptional
collections consisting of line bundles are related by mutations and shifts.

Proof. For the sake of simplicity we call two full exceptional collections equivalent if they
can be transformed into each other by a sequence of mutations and shifts. Let

(1.4.19) Db(X) = ⟨OX(D1), . . . ,OX(Dn)⟩,
where n = 12, be a full exceptional collection consisting of line bundles. Then ⟨OX(D2), . . . ,
OX(Dn),OX(D1 − KX)⟩ is an equivalent collection; see, e.g., [GK04, Cor. 2.8.3]. In
particular, any twist with an integer multiple of the canonical class can be realized as
a sequence of mutations and shifts. By Theorem 1.4.9 the toric system associated to
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(1.4.19) contains a (−1)-curve. After passing to an equivalent collection, we can assume
that E := D2 −D1 is a (−1)-curve. The left mutation of the pair ⟨OX(D1),OX(D2)⟩ is
defined by the exact triangle

OX(D1)⊗ RHom(OX(D1),OX(D2))
ev−→ OX(D2) → LOX(D1)(OX(D2)).

On the other hand

RHom(OX(D1),OX(D2)) = H•(X,OX(E)) = C[0].

Therefore the ideal sheaf sequence

0 → OX(−E)
ϕ−→ OX → OE → 0

yields an exact triangle

OX(D1) = OX(D1)⊗ RHom(OX(D1),OX(D2))
ev−→ OX(D2) → OE(D2),

where one verifies that ϕ⊗OX(D2) coincides with the evaluation map. As E is isomorphic
to a projective line, we conclude that (1.4.19) is equivalent to

(1.4.20) Db(X) = ⟨OE(d),OX(D1),OX(D3), . . . ,OX(Dn)⟩

for some d ∈ Z.
Let p : X → X ′ be the blow-down of E; then KX = p∗KX′ +E. Using the projection

formula to compute OE(d) ⊗ OX(KX) = OE(d) ⊗ OX(E), we can assume that d = −1
by twisting (1.4.20) with (d + 1)KX . This means that (1.4.19) is equivalent to a full
exceptional collection obtained by the blow-up formula from a del Pezzo surface X ′. By
using Theorem 1.3.1, we can mutate the full exceptional collection

⟨OX(D1),OX(D3), . . . ,OX(Dn)⟩ = Db(X ′)

to a collection consisting of 8 rank 0 and 3 rank 1 objects. By Lemma 1.4.11, the rank 0
objects are (shifts of) torsion sheaf on (−1)-curves. Thus, we can assume that the full
exceptional collection on X ′ comes from iterated blow-ups of a copy of P2. Hence, (1.4.20)
is equivalent to a collection

⟨OE′
1
(−1),OE′

2
(−d2), . . . ,OE′

9
(−d9),OX(nH ′),OX((n+ 1)H ′),OX((n+ 2)H ′)⟩,

where E′
1, . . . , E

′
9 are pairwise disjoint (−1)-curves with E′

iH
′ = 0 and H ′2 = 1. Twisting

the partial sequence

⟨OE′
2
(−d2), . . . ,OE′

9
(−d9),OX(nH ′),OX((n+ 1)H ′),OX((n+ 2)H ′)⟩

with KX′ can be realized as a sequence of mutations, because (− ⊗ OX(KX′)[2]) is the
Serre functor of

⟨OE′
2
(−d2), . . . ,OE′

9
(−d9),OX(nH ′),OX((n+ 1)H ′),OX((n+ 2)H ′)⟩ ∼= Db(X ′).

Thus we can assume d2 = 1 and repeating this procedure, we can assume that di = 1 for
all i. We have an equivalence ⟨OX(nH ′),OX((n+ 1)H ′),OX((n+ 2)H ′)⟩ ∼= Db(P2), where
H ′ is identified with a hyperplane class. On P2 we compute that ⟨OP2 ,OP2(H),OP2(2H)⟩
is equivalent to

⟨OP2(H),OP2(2H),OP2(−KP2) = OP2(3H)⟩,
thus in our situation we can assume that n = 0. Therefore E′

1, . . . , E
′
9, H

′ can be obtained
from E1, . . . , E9, H by applying an orthogonal transformation of Pic(X) fixing the canonical
class −3H +

∑
iEi = −3H ′ +

∑
iE

′
i.
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It remains to show that the two sequences

Db(X) = ⟨OX ,OX(E1), . . . ,OX(E9),OX(H),OX(2H)⟩ and

Db(X) = ⟨OX ,OX(E′
1), . . . ,OX(E

′
9),OX(H

′),OX(2H
′)⟩

are equivalent. By Lemma 1.4.6, the group O(Pic(X))KX
coincides with the Weyl group

generated by the reflections induced by the simple roots E1 − E2, . . . , E8 − E9, and
H − E1 − E2 − E3. The reflection along the hyperplane orthogonal to a (−2)-class v is
given by

sv(x) = x+ (x · v)v.
Thus if v = Ei − Ei+1, then sv fixes E1, . . . Ei−1, Ei+2, . . . ,H and permutes Ei and Ei+1.
This can be identified with a mutation of the exceptional pair ⟨OX(Ei),OX(Ei+1)⟩. Assume
v = H − E1 − E2 − E3; then sv fixes E4, . . . , E9. Computing the corresponding mutation
(on the blow-up of 3 points for simplicity) one observes that the full exceptional collection

Db(X) = ⟨OX ,OX(E1),OX(E2),OX(E3),OX(H),OX(2H)⟩
is changed to

Db(X) = ⟨OX ,OX(H − E2 − E3),OX(H − E1 − E3),OX(H − E1 − E2),

OX(2H − E1 − E2 − E3),OX(4H − 2E1 − 2E2 − 2E3)⟩.
This is the full exceptional collection obtained by the blow-up formula after blowing down
the strict transforms of the lines through 2 of the points. By Lemma 1.4.12 this simple
reflection can also be realized as a sequence of mutations and shifts.

In general an element of the Weyl group is a composition of simple reflections sv1◦· · ·◦svm .
Recall that for reflections sv ◦ sw ◦ sv = ssv(w) holds. This gives

ssv(w) ◦ sv = sv ◦ sw.
Applying this to our composition of simple reflections we can rewrite

sv1 ◦ · · · ◦ svm = ssv1 (v2) ◦ · · · ◦ ssv1 (vm) ◦ sv1 .

We conclude now by induction: After realizing sv1 by mutations and shifts, ssv1 (v2) ◦ · · · ◦
ssv1 (vm) is a sequence of m− 1 simple reflections with respect to the new basis of simple
roots obtained after applying sv1 . Hence it can be realized as a sequence of mutations and
shifts. □

We immediately obtain:

Corollary 1.4.21. On the blow-up X of P2 in 9 very general points, twisting a full
exceptional collections consisting of line bundles by a line bundle can be realized as a
sequence of mutations and shifts.

As a further corollary we obtain a new proof of a result of Kuleshov–Orlov.

Corollary 1.4.22 (cf. [KO94, Thm. 7.7]). Let X be a del Pezzo surface, then any two full
exceptional collections on X are related by mutations and shifts.

Proof. Recall that X is either P1 × P1 or a blow-up of less than 8 points in P2 in general
position. Given the latter case, suppose E• and F• are two full exceptional collections on
X. By Theorem 1.3.1 we can assume that E• and F• consist of rank 1 objects. Now by
Lemma 1.4.11 exceptional rank 1 objects on X are line bundles and we argue as in the
proof of Theorem 1.4.18.

Assume X = P1 × P1, then Pic(X) = ZH1 ⊕ ZH2 with H1H2 = 1 and H2
1 = H2

2 = 0
and KX = −2H1 − 2H2. One computes that any D ∈ Pic(X) such that D2 = 0 is either a
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multiple of H1 or a multiple of H2. In particular, D = H1 or D = H2 are the only classes
such that D2 = 0 and KXD = −2. Thus, the orthogonal transformations of Pic(X) fixing
KX are exactly the permutations of H1 and H2. Let E• be a full exceptional collection
on X. As before we can assume that E• is a sequence consisting of line bundles. By
Theorem 1.3.1 and Lemma 1.2.11 E• has the form

⟨OX(a, b),OX(a+ 1, b),OX(a, b+ 1),OX(a+ 1, b+ 1)⟩ or
⟨OX(a, b),OX(a, b+ 1),OX(a+ 1, b),OX(a+ 1, b+ 1)⟩.

Both are equivalent as the mutation L2,3 permutes the middle factors. One computes that
the right mutation ROX(a+1,b+1)(OX(a, b+ 1)) is equal to OX(a+ 2, b+ 1) up to possible
shifts and similarly ROX(a+1,b+1)(OX(a+ 1, b)) identifies with OX(a+ 1, b+ 2). We deduce
that E• is equivalent to

⟨OX(a, (b+ 1)),OX(a+ 1, (b+ 1)),OX(a, (b+ 1) + 1),OX(a+ 1, (b+ 1) + 1)⟩,

hence we realized the twist by OX(0, 1) as a sequence of mutations. Analogously one
obtains that the twist by OX(1, 0) is a sequence of mutations and therefore E• is equivalent
to

⟨OX(0, 0),OX(1, 0),OX(0, 1),OX(1, 1)⟩. □

Corollary 1.4.23. Let X be a smooth projective surface over a field k with χ(OX) = 1,
K2
X + rk(Knum

0 (X)) = 12, and rkKnum
0 (X) ≤ 12. Then any two exceptional bases e• and f•

of Knum
0 (X) are related by a sequence of mutations and sign changes.

Proof. By Vial’s classification, see Theorem 1.2.13 and Remark 1.2.14, we can assume
that X is a del Pezzo surface or the blow-up of P2 in 9 points. In these cases Knum

0 (X)
is independent from the base field and the position of points, thus we can assume that
the base field is C and the blown up points are in very general position. Moreover, by
Perling’s algorithm, see [Per18, Thm. 10.9], we can assume that e• and f• only consist
of rank 1 objects. Recall that for a numerically exceptional object E ∈ Db(X) the
Riemann–Roch formula implies c2(E) = 0, thus we may assume that e• and f• arise from
two numerically exceptional collections of maximal length consisting of line bundles. By
Corollary 1.4.10 if rkKnum

0 (X) = 12 or [EL16, Thm. 3.1] if rkKnum
0 (X) ≤ 11, e• and f•

arise from full exceptional collections consisting of line bundles. Hence, the corollary follows
from Theorem 1.4.18 and Corollary 1.4.22. □

1.5. Blow-up of 10 Points

Although the situation of 9 blown up points is similar to the case of del Pezzo surfaces,
the situation changes if we blow up 10 points. In fact, the conclusions of Lemma 1.4.3 and
Lemma 1.4.6 do not hold for the blow-up of 10 points.

Lemma 1.5.1. Let X be the blow-up of P2 in 10 points. Then the stabilizer of the canonical
class is

O(Pic(X))KX
=WX × ⟨ι⟩,

where WX is the reflection group generated by the simple reflections corresponding to the
roots H −E1−E2−E3, E1−E2, . . . , E9−E10 and ι is the involution of Pic(X) fixing KX

and given by multiplication of −1 on K⊥
X .

Proof. Denote the roots by α0 := H − E1 − E2 − E3, α1 := E1 − E2, . . . , α9 := E9 − E10.
Since K2

X = −1, Pic(X) splits as an orthogonal direct sum

Pic(X) = K⊥
X ⊕ ZKX .
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One can compute that a basis of K⊥
X is given by the roots α0, . . . , α9. Since Pic(X) has

signature (1, 10), K2
X = −1, and α2

i = −2 for all 0 ≤ i ≤ 9, K⊥
X is an even unimodular

lattice of signature (1, 9). But it is known, that there is only one even unimodular lattice of
signature (9, 1), which we denote by II9,1. Its orthogonal group was computed by Vinberg
[Vin75]. Vinberg’s result was rewritten by Conway–Sloane which use the description of
II9,1 as the set{

x = (x0, . . . , x9) ∈ Z10 ∪ (Z+ 1/2)10 | x0 + · · ·+ x8 − x9 ∈ 2Z
}
⊆ Q10

with bilinear form (x, y) :=
∑8

i=0 xiyi − x9y9. Now [CS99, § 27 Thm. 1] states that
O(II9,1) = WII9,1 × {± idII9,1}, where WII9,1 is the Weyl group of the root system in II9,1
with simple roots

βi = (0, . . . , 0︸ ︷︷ ︸
i

, 1,−1, 0, . . . , 0︸ ︷︷ ︸
8−i

) for 0 ≤ i ≤ 7,

β8 = (1/2, . . . , 1/2), and β9 = (−1,−1, 0, . . . , 0︸ ︷︷ ︸
8

).

We observe that sending α0 7→ β0, αi 7→ βi−2 for 3 ≤ i ≤ 9, and αi 7→ βi+7 for i = 1, 2

yields a suitable isomorphism of lattices K⊥
X

∼−→ II9,1(−1) such that the αi are send to the

simple roots βi. Clearly O(Pic(X))KX
= O(K⊥

X), thus the lemma follows. □

A further computation shows that

Di := ι(Ei) = −6H + 2
10∑
j=1

Ej − Ei and F := ι(H) = −19H + 6
10∑
i=1

Ei.

Thus

OX ,OX(D1), . . . ,OX(D10),OX(F ),OX(2F )

is a numerically exceptional collection of maximal length on X. We show in Chapter 2
that the collection is exceptional but not full. The divisors Di are not effective but satisfy
D2
i = −1 and χ(D) = 1. This shows that the conclusion of Lemma 1.4.3 does not hold for

blow-ups of 10 or more points.

Proposition 1.5.2. Let X be the blow-up of P2 in 10 general points. Then Z13 ⋊B13,
where B13 is the braid group acting by mutations and Z13 acts by shifts, does not act
transitively on the set of exceptional collections of length 13.

Proof. Mutations and shifts do not change the generated subcategory of an exceptional
collection. Thus the existence of a full and of a non-full exceptional collection of the same
length shows that the action cannot be transitive. □

Proposition 1.5.3. Let X be a smooth projective surface over a field k with χ(OX) = 1
and rkKnum

0 (X) = 13 such that Knum
0 (X) admits an exceptional basis. Then the action of

{±1}13 ⋊B13 has at most 2 orbits.

Proof. Without loss of generality, we assume that X is the blow-up of P2 in 10 general
points. Applying Theorem 1.3.1, we know that each orbit contains an exceptional basis of
the form

([OX(D1)], . . . , [OX(D13)]),

such that D2−D1 = φ(A1), D3−D2 = φ(A2), . . . , D13−D12 = φ(A12), where (A1, . . . , A13)
is the toric system associated to the collection

Db(X) = ⟨OX ,OX(E1), . . . ,OX(E10),OX(H),OX(2H)⟩
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and φ ∈ O(Pic(X))KX
. By Lemma 1.5.1, either φ ∈WX or φ can be written as ι ◦ w for

some w ∈WX . Thus, it is enough to show that for each φ ∈WX the collections

([OX(D1)], . . . , [OX(D13)]) and ([OX ], [OX(E1)], . . . , [OX(E10)], [OX(H)], [OX(2H)])

lie in the same orbit. As φ ∈WX sends (−1)-curves to (−1)-curves, D2−D1, . . . , D11−D1

is a set of disjoint (−1)-curves. Thus, we can argue as in Theorem 1.4.18 to reduce to
showing that

([OX ], [OX(E1)], . . . , [OX(E10)], [OX(H)], [OX(2H)])

and ([OX ], [OX(φ(E1))], . . . , [OX(φ(E10))], [OX(φ(H))], [OX(φ(2H))])

lie in the same orbit. But as φ can be factored in a sequence of simple reflections, this
follows with the same argument as in Theorem 1.4.18. □

Remark 1.5.4. A characterization similar to Lemma 1.4.11 of exceptional objects in Db(X),
where X is the blow-up of P2

C in 10 general points, would be of particular interest. More
precisely, if one could verify condition (b) from Section 1.1 for exceptional collections of
maximal length on X, one could conclude that there are 2 orbits of the {±1}13⋊B13-action
on exceptional bases of Knum

0 (X). One orbit would consist of the images of full exceptional
collections and the the other orbit of the images of exceptional collections of length 13
which are not full.





CHAPTER 2

A Phantom on a Rational Surface

Based on [Kra24a]

Summary. We construct a non-full exceptional collection of maximal length consisting of
line bundles on the blow-up of the projective plane in 10 general points. As a consequence,
the orthogonal complement of this collection is a universal phantom category. This
provides a counterexample to a conjecture of Kuznetsov and to a conjecture of Orlov.

2.1. Introduction

Let X be a smooth projective variety over the field of complex numbers and denote by
Db(X) the bounded derived category of coherent sheaves on X. A nontrivial admissible
subcategory A ⊆ Db(X) is called a phantom if the Grothendieck group K0(A) vanishes. The
first examples of phantom categories were constructed by Gorchinskiy–Orlov [GO13] and
Böhning–Graf von Bothmer–Katzarkov–Sosna [BGKP15]. It follows from a result of Efimov
that a so-called universal phantom can be embedded into a proper dg-category admitting a
full exceptional collection [Efi23]; see Section 2.2 for the definition of a universal phantom.
We provide a simple example of a variety which admits a full exceptional collection and a
universal phantom subcategory.

Theorem 2.1.1. Let X be the blow-up of P2
C in 10 general closed points p1, . . . , p10 ∈ P2

C.
Denote by H the divisor class obtained by pulling back the class of a hyperplane in P2

C and
denote by Ei the class of the exceptional divisor over the point pi, 1 ≤ i ≤ 10. Then

⟨OX ,OX(D1), . . . ,OX(D10),OX(F ),OX(2F )⟩ ⊆ Db(X),(2.1.2)

where Di := −6H + 2
10∑
j=1

Ej − Ei and F := −19H + 6
10∑
i=1

Ei,

is an exceptional collection of maximal length which is not full.

It was previously shown in [Pir23, Thm. 6.35] that a del Pezzo surface Y does not
admit a phantom in Db(Y ). Moreover, we showed in Chapter 1 that on the blow-up of P2

C
in 9 very general points every exceptional collection of maximal length consisting of line
bundles is full. We discovered the exceptional collection (2.1.2) while trying to increase the
number of blown up points in Theorem 1.1.3.

Since any blow-up of P2
C in a finite set of points admits a full exceptional collection,

Theorem 2.1.1 disproves the following conjecture of Kuznetsov:

Conjecture 2.1.3 ([Kuz14, Conj. 1.10]). Let T = ⟨E1, . . . , En⟩ be a triangulated category
generated by an exceptional collection. Then any exceptional collection of length n in T is
full.

As a consequence of Theorem 2.1.1, the right- or left-orthogonal complement of the
collection (2.1.2) is a phantom category. In general, if A is an admissible subcategory of
Db(X) and Db(X) admits a full exceptional collection, then by [Orl20, Cor. 3.4] A has

33
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a dg-enhancement quasi-equivalent to Perf –R, where R is a smooth finite-dimensional
dg-algebra. Hence, Theorem 2.1.1 disproves the following conjecture of Orlov:

Conjecture 2.1.4 ([Orl20, Conj. 3.7]). There are no phantoms of the form Perf –R,
where R is a smooth finite-dimensional dg-algebra and Perf –R is the dg-category of perfect
dg-modules over R.

Recently, Chang–Haiden–Schroll gave an example of a triangulated category admitting
a full exceptional collection such that the braid group action by mutations does not act
transitively on the set of full exceptional collections up to shifts [CHS23]. Since mutations
of exceptional collections do not change the generated subcategory, our example provides a
surface where the braid group does not act transitively on the set of exceptional collections
of maximal length.

Conventions. The term “n general points in P2
C” means that there exists a nonempty

Zariski open subset U ⊆ (P2
C)
n such that for any (p1, . . . , pn) ∈ U [...] holds.

Acknowledgements. We thank Charles Vial for helpful discussions and explanations. We
discovered the existence of the exceptional collection (2.1.2) in the context of our work
in Chapter 1, where we study the transitivity of the braid group action on (numerically)
exceptional collections on surfaces using a classification obtained by Vial in [Via17]. Further,
we thank the anonymous referees of [Kra24a] for carefully reading our manuscript.

2.2. Exceptional Collections

We recall the basic definitions and properties of exceptional collections and semiorthog-
onal decompositions. For a detailed reference we refer to [Kuz14] and the references
therein.

Let X be a smooth projective variety over C and denote by Db(X) the bounded derived
category of coherent sheaves on X. A semiorthogonal decomposition of Db(X) is an ordered
collection (A1, . . . ,An) of full triangulated subcategories such that

HomDb(X)(Ai, Aj) = 0 for all Ai ∈ Ai, Aj ∈ Aj , j < i

and the smallest triangulated subcategory of Db(X) containing A1, . . . ,An is Db(X). We
write

Db(X) = ⟨A1, . . . ,An⟩
for such a semiorthogonal decomposition. A full triangulated subcategory A ⊆ Db(X)
is called admissible if the inclusion functor A ↪→ Db(X) admits both a right and a left
adjoint. Such an admissible subcategory gives rise to the semiorthogonal decompositions
Db(X) = ⟨A⊥,A⟩ = ⟨A,⊥A⟩, where

⊥A := {F ∈ Db(X) | HomDb(X)(F,A) = 0 for all A ∈ A}

and A⊥ := {F ∈ Db(X) | HomDb(X)(A,F ) = 0 for all A ∈ A}

are the left- and right-orthogonal complements of A. If A is admissible, so are ⊥A and A⊥.
Recall the following definitions from Section 1.2.1: An object E ∈ Db(X) is called

exceptional if HomDb(X)(E,E) = C and HomDb(X)(E,E[k]) = 0 for all k ≠ 0. A collection

(E1, . . . , En) of exceptional objects is called an exceptional collection if

HomDb(X)(Ei, Ej [k]) = 0 for all j < i and all k ∈ Z.

The full triangulated subcategory ⟨E1, . . . , En⟩ ⊆ Db(X) generated by an exceptional
collection (E1, . . . , En) is always admissible; in particular, its left- and right-orthogonal
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complements are again admissible. An exceptional collection (E1, . . . , En) is full if it gener-
ates Db(X), i.e., ⟨E1, . . . , En⟩ = Db(X); equivalently ⟨E1, . . . , En⟩⊥ = 0 = ⊥⟨E1, . . . , En⟩.

A semiorthogonal decomposition Db(X) = ⟨A1, . . . ,An⟩ yields a direct sum decomposi-
tion of the Grothendieck group of Db(X):

K0(X) = K0(A1)⊕ · · · ⊕ K0(An).

An exceptional collection (E1, . . . , En) is of maximal length if there exists no further
exceptional object F ∈ Db(X) such that (E1, . . . , En, F ) is an exceptional collection.
Because ⟨Ei⟩ ∼= Db(SpecC) for an exceptional object Ei, we have K0(⟨Ei⟩) = Z[Ei]. Thus,
if K0(X) is finitely generated as an abelian group and n = rkK0(X), then any exceptional
collection of length n is of maximal length.

Assume that K0(X) is finitely generated and (E1, . . . , En) is an exceptional collection of
length n = rkK0(X). The additivity of K0 among semiorthogonal decompositions implies
that K0(A) = tors(K0(X)) is a finite group, where A = ⟨E1, . . . , En⟩⊥. If A ⊆ Db(X) is a
nonzero admissible subcategory with finite K0(A), then by definition A is a quasi phantom
and if additionally K0(A) = 0, then A is called a phantom.

Let A ⊆ Db(X) and B ⊆ Db(Y ) be full triangulated subcategories. Then A ⊠ B ⊆
Db(X ×Y ) denotes the smallest full triangulated subcategory of Db(X ×Y ) which is closed
under direct summands and contains all objects of the form Lp∗XA ⊗L Lp∗YB for A ∈ A

and B ∈ B. Following [GO13, Def. 1.9] an admissible subcategory A ⊆ Db(X) is called
a universal phantom if for all smooth projective varieties Y the category A⊠ Db(Y ) is a
phantom.

2.3. Segre–Harbourne–Gimigliano–Hirschowitz Conjecture

Let X be the blow-up of the projective plane P2
C in a set of closed points p1, . . . , pn ∈ P2

C.
Denote by Ei ⊆ X the (−1)-curve over the point pi and recall that Pic(X) = ZH ⊕ZE1 ⊕
· · · ⊕ ZEn, where H is the pullback of a hyperplane in P2

C. The class of a divisor D on X
can be uniquely written as

D = dH −
n∑
i=1

miEi

for some d,mi ∈ Z. Moreover, the intersection product satisfies H2 = 1, E2
i = −1,

H · Ei = 0, and Ei · Ej = 0 for all i ̸= j. If d > 0 and mi ≥ 0, the space of global
sections H0(X,OX(D)) can be identified with the space of homogeneous polynomials
P ∈ C[X,Y, Z] of degree d such that P vanishes to order ≥ mi at pi. If the points are
chosen in general position, meaning that h0(D) := dimH0(X,OX(D)) is minimal, then the
following conjecture due to Segre–Harbourne–Gimigliano–Hirschowitz predicts the value of
h0(D).

Conjecture 2.3.1 (SHGH). Let d > 0 and mi ≥ 0, 1 ≤ i ≤ n, be integers. For X the
blow-up of P2

C in n general points, the divisor D := dH −
∑n

i=1miEi satisfies

dimH0(X,OX(D)) = max(0, χ(X,OX(D)))

or there exists a (−1)-curve C ⊆ X such that C ·D ≤ −2.

Note that the generality constraints imposed on the points pi depend on the type of
divisor D, i.e., on the tuple (d,m1, . . . ,mn). If one requires h0(D) to be minimal for all
tuples (d,m1, . . . ,mn), then the points have to be chosen very general.

A divisor D = dH −
∑n

i=1miEi is said to be in standard form if d > 0, mi ≥ 0,
d ≥ m1 ≥ · · · ≥ mn, and d−m1 −m2 −m3 ≥ 0. The following Lemma 2.3.2 is certainly
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well-known, see, e.g., [CM11, Prop. 1.4]. As it will be used in the proof of Theorem 2.1.1,
we provide a proof here.

Lemma 2.3.2. Let X be the blow-up of P2
C in n points. If D = dH −

∑n
i=1miEi is in

standard form and C ⊆ X is a (−1)-curve, then D · C ≥ 0.

Proof. Let C ⊆ X be a (−1)-curve. If C = Ei for some i, then D · C = mi ≥ 0. If
C ̸= Ei for all i, then C is the strict transform of a curve in P2

C, thus linearly equivalent to
eH −

∑
i fiEi with e > 0, and fi ≥ 0 for 1 ≤ i ≤ n. Consider the divisors G1 := H − E1,

G2 := 2H −E1−E2, and Gj := 3H −
∑j

i=1Ei for 3 ≤ j ≤ n. By assumption, D is a linear
combination of H and Gj , 1 ≤ j ≤ n, with nonnegative coefficients. The divisors H, G1,
and G2 are nef. Further, Gj · C ≥ Gn · C = −KX · C for 3 ≤ j ≤ n. Since −KX · C = 1,
the lemma follows. □

The SHGH Conjecture is known to be true in various cases of low multiplicity. Alter-
natively, for a single explicit divisor D it is possible to compute the actual value of h0(D)
using a computer. We will use the following known cases to show that the collection in
Theorem 2.1.1 is exceptional:

Theorem 2.3.3 ([DJ07, Thm. 34], [CM11, Thm. 0.1]). Let X be the blow-up of P2
C in n

general points and let D = dH −
∑n

i=1miEi be a divisor with d > 0 and mi ≥ 0.

(i) If either all mi ≤ 11, or
(ii) if n = 10, m1 = m2 = · · · = m10, and d/m1 ≥ 174/55,

then the SHGH Conjecture holds for D, i.e.,

dimH0(X,OX(D)) = max(0, χ(X,OX(D))),

or there exists a (−1)-curve C ⊆ X such that C ·D ≤ −2.

2.4. Height and Pseudoheight of Exceptional Collections

Kuznetsov introduced in [Kuz15] the so-called height of an exceptional collection
⟨E1, . . . , En⟩ ⊆ Db(X): If D is a smooth and proper dg-category and B ⊆ D a dg-
subcategory, Kuznetsov defines the normal Hochschild cohomology NHH•(B,D) of B in
D as a certain dg-module [Kuz15, Def. 3.2]. The height of an exceptional collection
(E1, . . . , En) is then defined as

h(E1, . . . , En) := min{k ∈ Z | NHHk(E,D) ̸= 0}

where D is a dg-enhancement of Db(X) and E the dg-subcategory of D generated by
the exceptional objects (E1, . . . , En). In general, the normal Hochschild cohomology
NHH•(E,D) can be computed using a spectral sequence [Kuz15, Prop. 3.7]. For our
purpose it will be sufficient to consider a coarser invariant of an exceptional collection, the
so-called pseudoheight.

Definition 2.4.1 ([Kuz15, Def. 4.4, Def. 4.9]). For any two objects F, F ′ ∈ Db(X) define
the relative height as

e(F, F ′) := inf{k ∈ Z | Extk(F, F ′) ̸= 0}.

For an exceptional collection (E1, . . . , En) the pseudoheight is

ph(E1, . . . ,En)

:= min
1≤a0<···<ap≤n

(
e(Ea0 , Ea1) + · · ·+ e(Eap−1 , Eap) + e(Eap , S

−1(Ea0))− p
)
,
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where S = −⊗ωX [dimX] is the Serre functor of Db(X). The anticanonical pseudoheight is

phac(E1, . . . ,En)

:= min
1≤a0<···<ap≤n

(
e(Ea0 , Ea1) + · · ·+ e(Eap−1 , Eap) + e(Eap , Ea0 ⊗ ω−1

X )− p
)
.

Clearly, phac = ph− dimX.

Lemma 2.4.2 ([Kuz15, Lem. 4.5]). For an exceptional collection (E1, . . . , En) in Db(X)
we have h(E1, . . . , En) ≥ ph(E1, . . . , En).

We will use the following criterion to show that the exceptional collection in Theo-
rem 2.1.1 is not full.

Proposition 2.4.3 ([Kuz15, Prop. 6.1]). Let X be a smooth projective variety and
(E1, . . . , En) an exceptional collection in Db(X). If h(E1, . . . , En) > 0, then (E1, . . . , En)
is not full.

In particular, if phac(E1, . . . , En) > −dimX, then the collection is not full.

2.5. Proof of Theorem 2.1.1

Let X be the blow-up of P2
C in 10 general points. Using the Beilinson collection

Db(P2
C) = ⟨OP2

C
,OP2

C
(H),OP2

C
(2H)⟩, applying Orlov’s blow-up formula [Orl92], and applying

right mutations to the torsion sheaves, one obtains the full exceptional collection

Db(X) = ⟨OX ,OX(E1), . . . ,OX(E10),OX(H),OX(2H)⟩

consisting of line bundles. In particular, we obtain

K0(X) = Z[OX ]⊕ Z[OX(E1)]⊕ · · · ⊕ Z[OX(E10)]⊕ Z[OX(H)]⊕ Z[OX(2H)] ∼= Z13.

Recall from Section 1.5 that Pic(X) admits an orthogonal decomposition Pic(X) =
K⊥
X ⊕ ZKX and an involution ι : Pic(X) → Pic(X) given by ι := − idK⊥

X
⊕ idZKX

. We
compute

Di := ι(Ei) = −6H + 2
10∑
j=1

Ej − Ei and F := ι(H) = −19H + 6
10∑
i=1

Ei.

In particular, ι fixes the canonical class and thus, by Lemma 1.2.11,

(2.5.1) (OX ,OX(D1), . . . ,OX(D10),OX(F ),OX(2F ))

is a numerically exceptional collection, i.e., it is semiorthogonal with respect to the Euler
pairing

χ(F,G) :=
∑
i∈Z

(−1)i dimHomDb(X)(F,G[i])

and each object F in the collection satisfies χ(F, F ) = 1. Moreover, it is clear that the
image of (2.5.1) is a basis of the Grothendieck group K0(X) ∼= Z13, thus the collection is of
maximal length.

Proof of the Theorem 2.1.1. We first verify that the collection (2.5.1) is exceptional.
Since the collection is numerically exceptional and consists of sheaves, it suffices to
check the vanishing of Hom- and Ext2-spaces. Via Serre duality, the computation of an
Ext2-space can be done by computing global sections of a divisor. Thus, abbreviating
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hom(−,−) = dimHom(−,−) and extk(−,−) = dimExtk(−,−), we have to show that the
following dimensions are zero:

hom(OX(2F ),OX(F )) = h0(−F ),
ext2(OX(2F ),OX(F )) = h2(−F ) = h0(KX + F ),

hom(OX(2F ),OX(Di)) = h0(Di − 2F ),

ext2(OX(2F ),OX(Di)) = h2(Di − 2F ) = h0(KX −Di + 2F ),

hom(OX(2F ),OX) = h0(−2F ),

ext2(OX(2F ),OX) = h2(−2F ) = h0(KX + 2F ),

hom(OX(F ),OX(Di)) = h0(Di − F ),

ext2(OX(F ),OX(Di)) = h2(Di − F ) = h0(KX −Di + F ),

hom(OX(F ),OX) = h0(−F ),
ext2(OX(F ),OX) = h2(−F ) = h0(KX + F ),

hom(OX(Di),OX(Dj)) = h0(Dj −Di),

ext2(OX(Di),OX(Dj)) = h2(Dj −Di) = h0(KX −Dj +Di),

hom(OX(Di),OX) = h0(−Di),

ext2(OX(Di),OX) = h2(−Di) = h0(KX +Di),

where 1 ≤ i, j ≤ 10, i ≠ j. The vanishing holds trivially if the divisor has negative
intersection with H, is of the form Dj −Di = Ei − Ej , or is of the form KX −Dj +Di =
KX − Ei + Ej . The remaining cases are

−F = 19H − 6

10∑
j=1

Ej , −2F = 38H − 12

10∑
j=1

Ej , −Di = 6H − 2

10∑
j=1

Ej + Ei,(2.5.2)

Di − F = 13H − 4
10∑
j=1

Ej − Ei, Di − 2F = 32H − 10
10∑
j=1

Ej − Ei.

Up to permutation of the points, these divisors are in standard form. Thus by Lemma 2.3.2,
if D is one of the divisors in (2.5.2), then C ·D ≥ 0 holds for any (−1)-curve C ⊆ X. If
D ̸= −2F , then the multiplicities of D are bounded by 11, thus h0(D) = χ(D) = 0 by
Theorem 2.3.3 (i). If D = −2F , then we compute 38/12 ≥ 174/55. Hence, h0(−2F ) =
χ(−2F ) = 0 by Theorem 2.3.3 (ii). Therefore, (2.5.1) is exceptional.

To show that (2.5.1) is not full, by Proposition 2.4.3 and Lemma 2.4.2 it suffices to
show that the anticanonical pseudoheight phac of (2.5.1) is at least −1. In the following,
we show that phac ≥ 0. Recall that
(2.5.3)

phac = min
1≤a0<···<ap≤13

(
e(Ea0 , Ea1) + · · ·+ e(Eap−1 , Eap) + e(Eap , Ea0 ⊗ ω−1

X )− p
)
,

where the Eai are the exceptional objects in (2.5.1). Since (2.5.1) consists of sheaves,
e(Eai , Eai+1) and e(Eap , Ea0 ⊗ ω−1

X ) take values in {0, 1, 2,∞}. First, if p = 0, then the

expression under the minimum in (2.5.3) is e(Ea0 , Ea0 ⊗ω−1
X ) ≥ 0. Next, if p ≥ 1 and if we

know that e(Eai , Eai+1) ≥ 1 for all 0 ≤ i ≤ p− 1, then the expression under the minimum

in (2.5.3) is greater or equal than e(Eap , Ea0 ⊗ ω−1
X ) ≥ 0. Hence, it is enough to show that
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the following dimensions vanish:

hom(OX ,OX(Di)) = h0(Di),

hom(OX ,OX(F )) = h0(F ),

hom(OX ,OX(2F )) = h0(2F ),

hom(OX(Di),OX(Dj)) = h0(Dj −Di),

hom(OX(Di),OX(F )) = h0(F −Di),

hom(OX(Di),OX(2F )) = h0(2F −Di),

hom(OX(F ),OX(2F )) = h0(F ),

where 1 ≤ i, j ≤ 10 and i ≠ j. All these divisors have either negative intersection with H
or are of the form Dj −Di = Ei − Ej , thus the vanishing holds for trivial reasons. Hence,
phac ≥ 0 and we conclude that (2.5.1) is not full. □

Corollary 2.5.4. The admissible subcategory

A = ⟨OX ,OX(D1), . . . ,OX(D10),OX(F ),OX(2F )⟩⊥

is a universal phantom subcategory of Db(X).

Proof. The Chow motive of X with integer coefficients is of Lefschetz type and K0(A) = 0.
By [GO13, Cor. 4.3] the K-motive of A with integer coefficients vanishes and [GO13,
Prop. 4.4] shows that A is a universal phantom. □

Remark 2.5.5 (On the base field). Theorem 2.1.1 is stated using the base field C, since
we rely on [CM11, Thm. 0.1] in Theorem 2.3.3. Replacing the usage of [CM11, Thm. 0.1]
by a computer aided computation as Proposition 2.A.2, it is possible to deduce that the
conclusion of Theorem 2.1.1 also holds over an algebraically closed field of characteristic
zero.

Remark 2.5.6 (Hochschild cohomology of the phantom). Using the Hochschild–Kostant–
Rosenberg isomorphism, we compute in Lemma 2.B.5 that the Hochschild cohomology of
X satisfies:

dimHH0(X) = 1, dimHH1(X) = 0, dimHH2(X) = 12,

and dimHHi(X) = 0 for i ≥ 3.

Applying the techniques from [Kuz15] we further compute in Propositions 2.B.4 and 2.B.9
that the height of (2.5.1) is 4 and the Hochschild cohomology of A has the following
dimensions:

dimHH0(A) = 1, dimHH1(A) = 0, dimHH2(A) = 12, dimHH3(A) = 446,

dimHH4(A) = 853, dimHH5(A) = 420, dimHHi(A) = 0 for i ≥ 6.

In particular, the restriction morphism HHi(X) → HHi(A) is an isomorphism for 0 ≤ i ≤ 2
and a monomorphism for i = 3. As explained in [Kuz15, Prop. 4.8], this implies that the
formal deformation spaces of Db(X) and A are isomorphic.
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2.A. Verifying the SHGH Conjecture in Explicit Cases

Let K be field and let p1, . . . , pn ∈ P2
K(K) be K-valued points. Let π : X → P2

K be
the blow-up in p1, . . . , pn and recall that Pic(X) = ZH ⊕ ZE1 ⊕ · · · ⊕ ZEn, where Ei is
the exceptional divisor over the point pi and H the pullback of the class of a hyperplane
in P2

K . For integers d,m1, . . .mn ≥ 0 consider the divisor D := dH −
∑n

i=1miEi. In this
section we explain how to compute the dimension h0(D) = dimH0(X,OX(D)) for a field
K of characteristic zero and points p1, . . . , pn in sufficiently general position, meaning that
h0(D) is minimal. This method of computation is later used in Proposition 2.B.3 and
can also be used to verify the computations in Theorem 2.1.1 independently from the
literature. In particular, this method can be used, as outlined in Remark 2.5.5, to prove
the conclusion of Theorem 2.1.1 over an algebraically closed field of characteristic zero.

To begin with, we recall how global sections of OX(D) can be interpreted as explicit
polynomials: First, note that

π∗OX(D) = OP2
K
(dH)⊗ Im1

p1 ⊗ · · · ⊗ Imn
pn ,

where Ipi is the ideal sheaf of the point pi. Thus, by taking global sections, we can identify
H0(X,OX(D)) with homogeneous polynomials P ∈ K[X,Y, Z]deg d of degree d, which
vanish at pi to order ≥ mi for 1 ≤ i ≤ n.

Recall that if a point p ∈ P2
K lies in the affine open subset {Z ̸= 0} ⊆ P2

K and if
charK = 0 or charK > degP = d, then P vanishes to order ≥ m at p = [p1 : p2 : 1] ∈
{Z ̸= 0} if and only if

∂i+jP (X,Y, 1)

∂iX∂jY
(p1, p2, 1) = 0 for all 0 ≤ i+ j < m.

For simplicity assume that all pi lie in the affine open subset {Z ̸= 0} ⊆ P2
K and write

[pi1 : pi2 : 1] = pi ∈ {Z ̸= 0} ⊆ P2
K . Then H0(X,OX(D)) can be identified with the kernel

of the K-linear map

(2.A.1) K[X,Y, Z]deg d ∋ P 7→
(
∂i+jP (X,Y, 1)

∂iX∂jY
(pl1, pl2, 1)

)
i,j,l

∈ KN ,

for N =
∑n

l=1

(
ml+1

2

)
(if charK = 0 or charK > d). This shows that the inequality

h0(D) ≥ max

(
0, χ(D) =

(
d+ 2

2

)
−

n∑
l=1

(
ml + 1

2

))
is always fulfilled and is an equality if and only if (2.A.1) has maximal rank

min

(
n∑
l=1

(
ml + 1

2

)
,

(
d+ 2

2

))
.

Moreover, the map
(P2
K)n ∋ (p1, . . . , pn) 7→ h0(D)

41
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is upper semi-continuous and if the points pl = [pl1 : pl2 : 1] have integer coefficients
pl1, pl2 ∈ Z, then the linear map (2.A.1) is defined over Z. Thus, the following implication
holds: If H0(X,OX(D)) = max(0, χ(D)) holds for some finite K with charK > H · D
and K-valued points p0, . . . , pn, then H

0(X,OX(D)) = max(0, χ(D)) holds for a field K
of characteristic zero and any set p1, . . . , pn of points in general position. Hence, we can
verify the equality H0(X,OX(D)) = max(0, χ(D)) by a computation over a finite field.

The following procedure can be executed in Singular [Dec+21] and is a modified version
of the code used in [LU03], available at [Laf].

ring R=32003,(x,y,z),dp;

LIB "general.lib";

proc comp_eff_vir (int d,int mo,int m,int n)

{

int i,eff,virt,h;

intvec hi;

ideal I = 1;

for(i=1; i<=n;i=i+1)

{

int p(i) = random(-100,100);

int q(i) = random(-100,100);

ideal K(i) = x-p(i)*z,y-q(i)*z;

ideal I(i) = std(K(i)^(m));

I = std(intersect(I,I(i)));

}

int po = random(-100,100);

int qo = random(-100,100);

ideal Ko = x-po*z,y-qo*z;

ideal Io = std((Ko)^(mo));

I = std(intersect(I,Io));

hi = hilb(I,2);

h = min(d+1, size(hi));

eff = (((d+1)*(d+2)) div 2 )-sum(hi,1..h);

virt = (((d+1)*(d+2)) div 2)-((mo*(mo+1)) div 2)-((n*(m*(m+1))) div 2);

return (eff,virt);

}

Proposition 2.A.2. Let K be an algebraically closed field of characteristic zero. Let X be
the blow-up of P2

K in n+ 1 general points p0, . . . pn ∈ P2
K and let

D = dH −m0E0 −m

n∑
i=1

Ei for 0 < d,m0,m < 32003.

If the return value (eff,virt) of the procedure comp eff vir(d,m0,m,n) satisfies eff =
max(0, virt), then h0(D) = eff = max(0, virt).

Proof. The procedure comp eff vir(d,mo,m,n) takes 4 integers d,m0,m, n ≥ 0 and re-
turns the actual dimension h0(D) for the blow-up of n+ 1 random points p0, . . . , pn and
divisor D = dH −m0E0 −m

∑n
j=1Ei as the first value eff, as well as χ(D) as the second
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value virt. The whole computation is performed with coefficients in the field F32003. Thus,
by the upper semi-continuity of the map

(P2
K)n+1 ∋ (p0, . . . , pn) 7→ h0(D)

and the lower bound h0(D) ≥ max(0, χ(D)), the statement of the proposition follows.
In the following we describe the procedure comp eff vir() in words: In the first step,

a set of random points [pi : qi : 1] ∈ {Z ̸= 0} ⊆ P2
F32003

is chosen. These correspond to the
maximal ideals

(X − piZ, Y − qiZ, qiX − piY ) = (X − piZ, Y − qiZ) ⊆ F32003[X,Y, Z].

In the second step, the second Hilbert series of F32003[X,Y, Z]/I is computed, where

I = (X − p0Z, Y − q0Z)
m0 ∩ (X − p1Z, Y − q1Z)

m ∩ · · · ∩ (X − pnZ, Y − qnZ)
m.

Recall that the second Hilbert series of R/I are the coefficients of the polynomial Q
satisfying

(2.A.3)
∞∑
k=0

dim((R/I)deg k)t
k =

Q(t)

(1− t)dimR/I

where dimR/I is the affine Krull dimension. In our case dimR/I = 1 and solving (2.A.3)
recursively yields the formula for the actual dimension of h0(D) used to determine the
variable eff in comp eff vir(). □

2.B. Height and Hochschild Cohomology

Let X be the blow-up of P2
C in 10 general points. In Theorem 2.1.1 we showed that

the line bundles

(OX ,OX(D1), . . . ,OX(D10),OX(F ),OX(2F )),(2.B.1)

where Di := −6H + 2
10∑
j=1

Ej − Ei and F := −19H + 6
10∑
i=1

Ei,

form an exceptional collection in Db(X). In this section we compute the anticanoni-
cal pseudoheight of (2.B.1) and show that its height is equal to its pseudoheight; see
Proposition 2.B.4. After that we compute the Hochschild cohomology of

A = ⟨OX ,OX(D1), . . . ,OX(D10),OX(F ),OX(2F )⟩⊥ ⊆ Db(X);

see Proposition 2.B.9.

Lemma 2.B.2. All the morphisms in (2.B.1) are centered in Ext2, meaning that
Extk(Ei, Ej) = 0 for all k ̸= 2, i ̸= j, and Ei, Ej in (2.B.1). Moreover, the objects
OX(Di) and OX(Dj) are orthogonal for i ̸= j, i.e., e(OX(Di),OX(Dj)) = ∞.

Proof. Since H•(X,OX(Ej − Ei)) = 0, OX(Di) and OX(Dj) are orthogonal. We have
already seen in the proof of Theorem 2.1.1 that (2.B.1) admits no Hom-spaces between any
pair of distinct objects. In order to conclude that there are also no Ext1-spaces it suffices
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to show that ext2(Ei, Ej) = χ(Ei, Ej) for all i ̸= j. We verify:

ext2(OX ,OX(Di)) = h2(Di) = h0(KX −Di) = 1,

ext2(OX ,OX(F )) = h2(F ) = h0(KX − F ) = 3,

ext2(OX ,OX(2F )) = h2(2F ) = h0(KX − 2F ) = 6,

ext2(OX(Di),OX(Dj)) = h2(Dj −Di) = h0(KX − Ei + Ej) = 0,

ext2(OX(Di),OX(F )) = h2(F −Di) = h0(KX − F +Di) = 2,

ext2(OX(Di),OX(2F )) = h2(2F −Di) = h0(KX − 2F +Di) = 5,

ext2(OX(F ),OX(2F )) = h2(F ) = h0(KX − F ) = 3.

Again all the divisors are in standard form and have multiplicities bounded by 11 and thus
belong to the known cases of the SHGH Conjecture [DJ07]. □

Proposition 2.B.3. The anticanonical pseudoheight of (2.B.1) is 2.

Proof. Since e(OX(Di),OX(Dj)) = ∞, the anticanonical pseudoheight is the minimum of
the following numbers:

e(OX ,OX(−KX)),

e(OX ,OX(Di)) + e(OX(Di),OX(−KX))− 1,

e(OX ,OX(F )) + e(OX(F ),OX(−KX))− 1,

e(OX ,OX(2F )) + e(OX(2F ),OX(−KX))− 1,

e(OX(Di),OX(F )) + e(OX(F ),OX(Di −KX))− 1,

e(OX(Di),OX(2F )) + e(OX(2F ),OX(Di −KX))− 1,

e(OX(F ),OX(2F )) + e(OX(2F ),OX(F −KX))− 1,

e(OX ,OX(Di)) + e(OX(Di),OX(F )) + e(OX(F ),OX(−KX))− 2,

e(OX ,OX(Di)) + e(OX(Di),OX(2F )) + e(OX(2F ),OX(−KX))− 2,

e(OX ,OX(F )) + e(OX(F ),OX(2F )) + e(OX(2F ),OX(−KX))− 2,

e(OX(Di),OX(F )) + e(OX(F ),OX(2F )) + e(OX(2F ),OX(Di −KX))− 2,

e(OX ,OX(Di)) + e(OX(Di,OX(F )) + e(OX(F ),OX(2F )) + e(OX(2F ),OX(−KX))− 3.

We compute:

e(OX ,OX(−KX)) = ∞,

e(OX ,OX(−KX −Di)) = 1,

e(OX ,OX(−KX − F )) = 1,

e(OX ,OX(−KX − 2F )) = 1,

e(OX ,OX(Di −KX − F )) = 1,

e(OX ,OX(Di −KX − 2F )) = 1.

Note that the divisor Di−KX−2F does not belong to the known cases of the SHGH Conjec-
ture. We verified the vanishing of global sections with a computer using Proposition 2.A.2.
Thus, the anticanonical pseudoheight is 2. □

Proposition 2.B.4. The height of (2.B.1) is 4.
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Proof. It follows from Proposition 2.B.3 that the pseudoheight is 4, thus it suffice to show
that the height is equal to the pseudoheight. First, note that

Ext2(OX ,OX(−KX −Di)) = Ext2(OX ,OX(−KX − F )) = Ext2(OX ,OX(−KX − 2F ))

= Ext2(OX ,OX(Di −KX − F )) = Ext2(OX ,OX(Di −KX − 2F )) = 0.

Indeed, after applying Serre duality one can show the vanishing by computing global
sections of divisors which all have negative intersection with the hyperplane class H.
Recall the following techniques from [Kuz15]: As before let E be the dg-subcategory of
a dg-enhancement of Db(X) generated by the exceptional collection (2.B.1). In [Kuz15,
Prop. 3.7] the existence of a spectral sequence

E−p,q
1 ⇒ NHHq−p(E, X)

is established. The E1-page of that spectral sequence is is given by

E−p,q
1 =

⊕
1≤a0<···<ap≤n
k0+···+kp=q

Extk0(Ea0 , Ea1)⊗ · · · ⊗ Extkp−1(Eap−1 , Eap)⊗ Extkp(Eap , S
−1(Ea0))

with S the Serre functor of Db(X). The differential on the E1-page is given by the
Yoneda-multiplication of adjacent Ext-spaces. Concerning the collection (2.B.1), there are
only Ext2-spaces between objects belonging to the exceptional collection and the term
Extkp(Eap , S

−1(Ea0)) = Extkp−2(Eap , Ea0 ⊗ ω−1
X ) takes nontrivial values only if kp = 3.

We conclude from dimX = 2 that the differential on the E1-page is zero. This shows that
the height of (2.B.1) is equal to the pseudoheight. □

Lemma 2.B.5. The Hochschild cohomology of X is given by:

HH0(X) = C, HH1(X) = 0, HH2(X) = C12, and HHi(X) = 0 for i ≥ 3.

Proof. The Hochschild cohomology of a smooth projective variety Y can be computed via
the Hochschild–Kostant–Rosenberg isomorphism

HHk(Y ) =
⊕
p+q=k

Hq

(
Y,

p∧
TY

)
,

see [Swa96, Cor. 2.6]. Thus, in order to determine HH•(X) we have to compute H•(X,TX).
Recall that for any smooth projective surface Y there is a non-degenerate pairing

Ω1
Y ⊗ Ω1

Y → ωY ,

which identifies TY = Hom(Ω1
Y ,OY )

∼= Ω1
Y ⊗ ω−1

Y . Fix the following notation for the
blow-up:

X P2
C

E =
∐10
i=1Ei Z := {p1, . . . , p10}.

π

j

The cotangent bundle Ω1
X fits into an exact sequence

(2.B.6) 0 → π∗Ω1
P2
C
→ Ω1

X → Ω1
X/P2

C
→ 0,

where the relative cotangent sheaf Ω1
X/P2

C
can be identified with j∗Ω

1
E/Z = j∗

(⊕10
i=1Ω

1
Ei

)
.

Twisting (2.B.6) with ω−1
X = OX(3H −

∑
iEi), using the projection formula, and the
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isomorphism TY ∼= Ω1
Y ⊗ ω−1

Y for Y = P2
C and Y = X, we obtain an exact sequence

(2.B.7) 0 → (π∗TP2
C
)⊗ OX

(
−

10∑
i=1

Ei

)
→ TX →

(
j∗

10⊕
i=1

OEi(−2)

)
⊗ ω−1

X → 0.

The projection formula yields

π∗

(
(π∗TP2

C
)⊗ OX

(
−

10∑
i=1

Ei

))
= TP2

C
⊗ Ip1 ⊗ · · · ⊗ Ip10 ,

where Ipi is the ideal sheaf of the point pi ∈ P2
C. Therefore we can identify global sections

of (π∗TP2
C
)⊗ OX (−

∑
iEi) with global sections of TP2

C
vanishing at the points pi.

Moreover, the sheaf (j∗
⊕

i OEi(−2)) ⊗ ω−1
X is supported on the exceptional divisor

E and can be identified with j∗
⊕

i OEi(−1). In particular, j∗
⊕

i OEi(−1) has no global
sections. Thus, applying H0(X,−) to (2.B.7) identifies H0(X,TX) with global sections of
TP2

C
vanishing at the points pi.

With the help of the Euler sequence it is easy to compute that

H i(P2
C, TP2

C
) =

{
C8 if i = 0,

0 if i > 0.

In order to conclude that H0(X,TX) = 0, it is enough to show that if S → P2
C is the

blow-up of 4 general points, i.e., a del Pezzo surface of degree 5, then H0(S, TS) = 0. It
is known, see, e.g., [DI09, § 6.3], that the automorphism group Aut(S) is finite. Since
dimTidS Aut(S) = dimH0(S, TS), see, e.g., [Kol96, Ex. 2.16.4], this shows H0(S, TS) = 0
and thus H0(X,TX) = 0.

In order to determine H i(X,TX) for i > 0, we first dualize (2.B.6) to obtain

(2.B.8) 0 → Hom(j∗Ω
1
E/Z ,OX) → TX → π∗TP2

C
→ Ext1(j∗Ω

1
E/Z ,OX) → 0.

Using the identification j∗Ω
1
E/Z = j∗

⊕
i OEi(−2) = j∗OE(2E), the twisted ideal sheaf

sequence of E yields a locally free resolution

0 → OX(E) → OX(2E) → j∗OE(2E) → 0.

Applying Hom(−,OX), we obtain

Hom(j∗Ω
1
E/Z ,OX) = ker(OX(−2E) → OX(−E)) and

Ext1(j∗Ω
1
E/Z ,OX) = coker(OX(−2E) → OX(−E)).

Thus, Hom(j∗Ω
1
E/Z ,OX) = 0 and Ext1(j∗Ω

1
E/Z ,OX)

∼= j∗
⊕

i OEi(1) and we obtain a short
exact sequence

0 → TX → π∗TP2
C
→ j∗

10⊕
i=1

OEi(1) → 0.

(This sequence can also be obtained from (2.B.8) by using the right adjoint j! of j∗ and
computing j!OX = j∗OX(E)[−1].) Using the associated long exact sequence in cohomology
and the identification π∗π

∗TP2
C
= TP2

C
, we obtain

h1(X,TX) = h0

(
E,

10⊕
i=1

OEi(1)

)
− h0(P2

C, TP2
C
) = 20− 8 = 12

and H i(X,TX) = 0 for i > 1.
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Finally, using
∧2 TX = ω−1

X , we obtain using the Hochschild–Kostant–Rosenberg isomor-
phism

HH0(X) = H0(X,OX) = C,
HH1(X) = H0(X,TX) = 0,

HH2(X) = H1(X,TX) = C12, and

HHi(X) = 0 for i ≥ 3. □

Proposition 2.B.9. The Hochschild cohomology of

A = ⟨OX ,OX(D1), . . . ,OX(D10),OX(F ),OX(2F )⟩⊥ ⊆ Db(X)

has the following dimensions:

dimHH0(A) = 1, dimHH1(A) = 0, dimHH2(A) = 12, dimHH3(A) = 446,

dimHH4(A) = 853, dimHH5(A) = 420, dimHHi(A) = 0 for i ≥ 6.

Proof. The Hochschild cohomology of A can be computed using the exact triangle

(2.B.10) NHH•(E, X) → HH•(X) → HH•(A),

established in [Kuz15, Thm. 3.3]. We already determined HH•(X) in Lemma 2.B.5. To
compute the dimensions of NHH•(E, X), we will use the spectral sequence from [Kuz15,
Prop. 3.7] as in the proof of Proposition 2.B.4. Using the long exact sequence associated
to (2.B.10) and Lemma 2.B.5 we already know

HH0(A) ∼= HH0(X) = C,
HH1(A) ∼= HH1(X) = 0,

HH2(A) ∼= HH2(X) = C12,

HHi(A) ∼= NHHi+1(E, X) ∼= Ei+1
∞ for i ≥ 3.

Moreover, as argued in Proposition 2.B.4 the spectral sequence

E−p,q
1 ⇒ NHHq−p(E, X)

degenerates on the E1-page. Thus, it remains to compute dimensions of the nontrivial
pieces of the E1-page. These are:

E−1,5
1 =

(
10⊕
i=1

Ext2(OX ,OX(Di))⊗ Ext3−2(OX(Di),OX(−KX))

)
⊕ Ext2(OX ,OX(F ))⊗ Ext3−2(OX(F ),OX(−KX))

⊕ Ext2(OX ,OX(2F ))⊗ Ext3−2(OX(2F ),OX(−KX))

⊕

(
10⊕
i=1

Ext2(OX(Di),OX(F ))⊗ Ext3−2(OX(F ),OX(Di −KX))

)

⊕

(
10⊕
i=1

Ext2(OX(Di),OX(2F ))⊗ Ext3−2(OX(2F ),OX(Di −KX))

)
⊕ Ext2(OX(F ),OX(2F ))⊗ Ext3−2(OX(2F ),OX(F −KX)),
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which implies that dimE−1,5
1 = 1 · 2 · 10 + 3 · 4 + 6 · 7 + 2 · 3 · 10 + 5 · 6 · 10 + 3 · 4 = 446.

E−2,7
1 =

(
10⊕
i=1

Ext2(OX ,OX(Di))⊗ Ext2(OX(Di),OX(F ))⊗ Ext3−2(OX(F ),OX(−KX))

)

⊕

(
10⊕
i=1

Ext2(OX ,OX(Di))⊗ Ext2(OX(Di),OX(2F ))

⊗Ext3−2(OX(2F ),OX(−KX))

)
⊕Ext2(OX ,OX(F ))⊗ Ext2(OX(F ),OX(2F ))⊗ Ext3−2(OX(2F ),OX(−KX))

⊕

(
10⊕
i=1

Ext2(OX(Di),OX(F ))⊗ Ext2(OX(F ),OX(2F ))

⊗Ext3−2(OX(2F ),OX(Di −KX))

)
,

which implies that dimE−2,7
1 = 1 · 2 · 4 · 10 + 1 · 5 · 7 · 10 + 3 · 3 · 7 + 2 · 3 · 6 · 10 = 853.

E−3,9
1 =

10⊕
i=1

Ext2(OX ,OX(Di))⊗ Ext2(OX(Di),OX(F ))

⊗ Ext2(OX(F ),OX(2F ))⊗ Ext3−2(OX(2F ),OX(−KX)),

which implies that dimE−3,9
1 = 1 · 2 · 3 · 7 · 10 = 420. Finally, we conclude

dimHH3(A) = dimNHH4(E, X) = dimE−1,5
1 = 446,

dimHH4(A) = dimNHH5(E, X) = dimE−2,7
1 = 853, and

dimHH5(A) = dimNHH6(E, X) = dimE−3,9
1 = 420. □
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[DJ07] Marcin Dumnicki andWitold Jarnicki. “New effective bounds on the dimension
of a linear system in P2”. J. Symbolic Comput. 42.6 (2007), pp. 621–635.

[Efi23] Alexander Efimov. Private communication. Bielefeld, June 13, 2023.
[EL16] Alexey Elagin and Valery Lunts. “On full exceptional collections of line

bundles on del Pezzo surfaces”. Mosc. Math. J. 16.4 (2016), pp. 691–709.
[EXZ21] Alexey Elagin, Junyan Xu, and Shizhuo Zhang. “On cyclic strong exceptional

collections of line bundles on surfaces”. Eur. J. Math. 7.1 (2021), pp. 69–115.

49

https://arxiv.org/abs/2405.01683v1
https://arxiv.org/abs/2301.04398v2
https://arxiv.org/abs/2301.04398v2
http://www.singular.uni-kl.de


50 REFERENCES

[Fer05] Tommaso de Fernex. “Negative curves on very general blow-ups of P2”.
Projective varieties with unexpected properties. Walter de Gruyter, Berlin,
2005, pp. 199–207.

[Gab62] Pierre Gabriel. “Des catégories abéliennes”. Bull. Soc. Math. France 90 (1962),
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